MakeItFrom.com
Menu (ESC)

6463 Aluminum vs. SAE-AISI 1055 Steel

6463 aluminum belongs to the aluminum alloys classification, while SAE-AISI 1055 steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6463 aluminum and the bottom bar is SAE-AISI 1055 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 42 to 74
220
Elastic (Young's, Tensile) Modulus, GPa 68
190
Elongation at Break, % 9.0 to 17
11 to 14
Fatigue Strength, MPa 45 to 76
260 to 390
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
72
Shear Strength, MPa 86 to 150
440 to 450
Tensile Strength: Ultimate (UTS), MPa 140 to 230
730 to 750
Tensile Strength: Yield (Proof), MPa 82 to 200
400 to 630

Thermal Properties

Latent Heat of Fusion, J/g 400
250
Maximum Temperature: Mechanical, °C 160
400
Melting Completion (Liquidus), °C 660
1460
Melting Onset (Solidus), °C 620
1420
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 190 to 210
51
Thermal Expansion, µm/m-K 23
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 50 to 55
11
Electrical Conductivity: Equal Weight (Specific), % IACS 170 to 180
12

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
1.8
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 8.3
1.4
Embodied Energy, MJ/kg 150
18
Embodied Water, L/kg 1190
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 17 to 25
80 to 85
Resilience: Unit (Modulus of Resilience), kJ/m3 50 to 300
440 to 1070
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 14 to 24
26
Strength to Weight: Bending, points 22 to 31
23
Thermal Diffusivity, mm2/s 79 to 86
14
Thermal Shock Resistance, points 6.3 to 10
23 to 24

Alloy Composition

Aluminum (Al), % 97.9 to 99.4
0
Carbon (C), % 0
0.5 to 0.6
Copper (Cu), % 0 to 0.2
0
Iron (Fe), % 0 to 0.15
98.4 to 98.9
Magnesium (Mg), % 0.45 to 0.9
0
Manganese (Mn), % 0 to 0.050
0.6 to 0.9
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0.2 to 0.6
0
Sulfur (S), % 0
0 to 0.050
Zinc (Zn), % 0 to 0.050
0
Residuals, % 0 to 0.15
0