MakeItFrom.com
Menu (ESC)

6463 Aluminum vs. N10003 Nickel

6463 aluminum belongs to the aluminum alloys classification, while N10003 nickel belongs to the nickel alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 6463 aluminum and the bottom bar is N10003 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
210
Elongation at Break, % 9.0 to 17
42
Fatigue Strength, MPa 45 to 76
260
Poisson's Ratio 0.33
0.3
Shear Modulus, GPa 26
80
Shear Strength, MPa 86 to 150
540
Tensile Strength: Ultimate (UTS), MPa 140 to 230
780
Tensile Strength: Yield (Proof), MPa 82 to 200
320

Thermal Properties

Latent Heat of Fusion, J/g 400
320
Maximum Temperature: Mechanical, °C 160
930
Melting Completion (Liquidus), °C 660
1520
Melting Onset (Solidus), °C 620
1460
Specific Heat Capacity, J/kg-K 900
420
Thermal Conductivity, W/m-K 190 to 210
12
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 50 to 55
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 170 to 180
1.4

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
70
Density, g/cm3 2.7
8.9
Embodied Carbon, kg CO2/kg material 8.3
13
Embodied Energy, MJ/kg 150
180
Embodied Water, L/kg 1190
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 17 to 25
260
Resilience: Unit (Modulus of Resilience), kJ/m3 50 to 300
240
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
22
Strength to Weight: Axial, points 14 to 24
24
Strength to Weight: Bending, points 22 to 31
21
Thermal Diffusivity, mm2/s 79 to 86
3.1
Thermal Shock Resistance, points 6.3 to 10
21

Alloy Composition

Aluminum (Al), % 97.9 to 99.4
0 to 0.5
Boron (B), % 0
0 to 0.010
Carbon (C), % 0
0.040 to 0.080
Chromium (Cr), % 0
6.0 to 8.0
Cobalt (Co), % 0
0 to 0.2
Copper (Cu), % 0 to 0.2
0 to 0.35
Iron (Fe), % 0 to 0.15
0 to 5.0
Magnesium (Mg), % 0.45 to 0.9
0
Manganese (Mn), % 0 to 0.050
0 to 1.0
Molybdenum (Mo), % 0
15 to 18
Nickel (Ni), % 0
64.8 to 79
Phosphorus (P), % 0
0 to 0.015
Silicon (Si), % 0.2 to 0.6
0 to 1.0
Sulfur (S), % 0
0 to 0.020
Tungsten (W), % 0
0 to 0.5
Vanadium (V), % 0
0 to 0.5
Zinc (Zn), % 0 to 0.050
0
Residuals, % 0 to 0.15
0