MakeItFrom.com
Menu (ESC)

7003 Aluminum vs. A444.0 Aluminum

Both 7003 aluminum and A444.0 aluminum are aluminum alloys. They have a moderately high 93% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 7003 aluminum and the bottom bar is A444.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
70
Elongation at Break, % 11
18
Fatigue Strength, MPa 130 to 150
37
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 26
26
Tensile Strength: Ultimate (UTS), MPa 350 to 390
160
Tensile Strength: Yield (Proof), MPa 300 to 310
66

Thermal Properties

Latent Heat of Fusion, J/g 380
500
Maximum Temperature: Mechanical, °C 200
170
Melting Completion (Liquidus), °C 630
630
Melting Onset (Solidus), °C 510
590
Specific Heat Capacity, J/kg-K 870
900
Thermal Conductivity, W/m-K 150
160
Thermal Expansion, µm/m-K 24
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 36
41
Electrical Conductivity: Equal Weight (Specific), % IACS 110
140

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.9
2.6
Embodied Carbon, kg CO2/kg material 8.1
7.9
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1140
1110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 37 to 41
24
Resilience: Unit (Modulus of Resilience), kJ/m3 630 to 710
31
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 47
53
Strength to Weight: Axial, points 33 to 37
17
Strength to Weight: Bending, points 37 to 40
25
Thermal Diffusivity, mm2/s 59
68
Thermal Shock Resistance, points 15 to 17
7.3

Alloy Composition

Aluminum (Al), % 90.6 to 94.5
91.6 to 93.5
Chromium (Cr), % 0 to 0.2
0
Copper (Cu), % 0 to 0.2
0 to 0.1
Iron (Fe), % 0 to 0.35
0 to 0.2
Magnesium (Mg), % 0.5 to 1.0
0 to 0.050
Manganese (Mn), % 0 to 0.3
0 to 0.1
Silicon (Si), % 0 to 0.3
6.5 to 7.5
Titanium (Ti), % 0 to 0.2
0 to 0.2
Zinc (Zn), % 5.0 to 6.5
0 to 0.1
Zirconium (Zr), % 0.050 to 0.25
0
Residuals, % 0
0 to 0.15