MakeItFrom.com
Menu (ESC)

7003 Aluminum vs. AISI 410Cb Stainless Steel

7003 aluminum belongs to the aluminum alloys classification, while AISI 410Cb stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7003 aluminum and the bottom bar is AISI 410Cb stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
190
Elongation at Break, % 11
15
Fatigue Strength, MPa 130 to 150
180 to 460
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 26
76
Shear Strength, MPa 210 to 230
340 to 590
Tensile Strength: Ultimate (UTS), MPa 350 to 390
550 to 960
Tensile Strength: Yield (Proof), MPa 300 to 310
310 to 790

Thermal Properties

Latent Heat of Fusion, J/g 380
270
Maximum Temperature: Mechanical, °C 200
730
Melting Completion (Liquidus), °C 630
1450
Melting Onset (Solidus), °C 510
1400
Specific Heat Capacity, J/kg-K 870
480
Thermal Conductivity, W/m-K 150
27
Thermal Expansion, µm/m-K 24
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 36
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 110
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
7.5
Density, g/cm3 2.9
7.7
Embodied Carbon, kg CO2/kg material 8.1
2.0
Embodied Energy, MJ/kg 150
29
Embodied Water, L/kg 1140
97

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 37 to 41
70 to 130
Resilience: Unit (Modulus of Resilience), kJ/m3 630 to 710
240 to 1600
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 47
25
Strength to Weight: Axial, points 33 to 37
20 to 35
Strength to Weight: Bending, points 37 to 40
19 to 28
Thermal Diffusivity, mm2/s 59
7.3
Thermal Shock Resistance, points 15 to 17
20 to 35

Alloy Composition

Aluminum (Al), % 90.6 to 94.5
0
Carbon (C), % 0
0 to 0.18
Chromium (Cr), % 0 to 0.2
11 to 13
Copper (Cu), % 0 to 0.2
0
Iron (Fe), % 0 to 0.35
84.5 to 89
Magnesium (Mg), % 0.5 to 1.0
0
Manganese (Mn), % 0 to 0.3
0 to 1.0
Niobium (Nb), % 0
0.050 to 0.3
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.3
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 5.0 to 6.5
0
Zirconium (Zr), % 0.050 to 0.25
0
Residuals, % 0 to 0.15
0