MakeItFrom.com
Menu (ESC)

7003 Aluminum vs. ASTM A356 Grade 5

7003 aluminum belongs to the aluminum alloys classification, while ASTM A356 grade 5 belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7003 aluminum and the bottom bar is ASTM A356 grade 5.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
190
Elongation at Break, % 11
25
Fatigue Strength, MPa 130 to 150
230
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 26
73
Tensile Strength: Ultimate (UTS), MPa 350 to 390
550
Tensile Strength: Yield (Proof), MPa 300 to 310
310

Thermal Properties

Latent Heat of Fusion, J/g 380
250
Maximum Temperature: Mechanical, °C 200
420
Melting Completion (Liquidus), °C 630
1470
Melting Onset (Solidus), °C 510
1420
Specific Heat Capacity, J/kg-K 870
470
Thermal Conductivity, W/m-K 150
49
Thermal Expansion, µm/m-K 24
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 36
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 110
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
2.6
Density, g/cm3 2.9
7.9
Embodied Carbon, kg CO2/kg material 8.1
1.5
Embodied Energy, MJ/kg 150
20
Embodied Water, L/kg 1140
49

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 37 to 41
120
Resilience: Unit (Modulus of Resilience), kJ/m3 630 to 710
250
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 47
24
Strength to Weight: Axial, points 33 to 37
20
Strength to Weight: Bending, points 37 to 40
19
Thermal Diffusivity, mm2/s 59
13
Thermal Shock Resistance, points 15 to 17
16

Alloy Composition

Aluminum (Al), % 90.6 to 94.5
0
Carbon (C), % 0
0 to 0.25
Chromium (Cr), % 0 to 0.2
0.4 to 0.7
Copper (Cu), % 0 to 0.2
0
Iron (Fe), % 0 to 0.35
97.1 to 99.2
Magnesium (Mg), % 0.5 to 1.0
0
Manganese (Mn), % 0 to 0.3
0 to 0.7
Molybdenum (Mo), % 0
0.4 to 0.6
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0 to 0.3
0 to 0.6
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 5.0 to 6.5
0
Zirconium (Zr), % 0.050 to 0.25
0
Residuals, % 0 to 0.15
0