MakeItFrom.com
Menu (ESC)

7003 Aluminum vs. ASTM A369 Grade FP12

7003 aluminum belongs to the aluminum alloys classification, while ASTM A369 grade FP12 belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7003 aluminum and the bottom bar is ASTM A369 grade FP12.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
190
Elongation at Break, % 11
20
Fatigue Strength, MPa 130 to 150
170
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 26
73
Shear Strength, MPa 210 to 230
300
Tensile Strength: Ultimate (UTS), MPa 350 to 390
470
Tensile Strength: Yield (Proof), MPa 300 to 310
250

Thermal Properties

Latent Heat of Fusion, J/g 380
250
Maximum Temperature: Mechanical, °C 200
430
Melting Completion (Liquidus), °C 630
1470
Melting Onset (Solidus), °C 510
1430
Specific Heat Capacity, J/kg-K 870
470
Thermal Conductivity, W/m-K 150
45
Thermal Expansion, µm/m-K 24
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 36
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 110
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
2.8
Density, g/cm3 2.9
7.9
Embodied Carbon, kg CO2/kg material 8.1
1.6
Embodied Energy, MJ/kg 150
21
Embodied Water, L/kg 1140
52

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 37 to 41
81
Resilience: Unit (Modulus of Resilience), kJ/m3 630 to 710
160
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 47
24
Strength to Weight: Axial, points 33 to 37
17
Strength to Weight: Bending, points 37 to 40
17
Thermal Diffusivity, mm2/s 59
12
Thermal Shock Resistance, points 15 to 17
14

Alloy Composition

Aluminum (Al), % 90.6 to 94.5
0
Carbon (C), % 0
0.050 to 0.15
Chromium (Cr), % 0 to 0.2
0.8 to 1.3
Copper (Cu), % 0 to 0.2
0
Iron (Fe), % 0 to 0.35
96.8 to 98.4
Magnesium (Mg), % 0.5 to 1.0
0
Manganese (Mn), % 0 to 0.3
0.3 to 0.61
Molybdenum (Mo), % 0
0.44 to 0.65
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.3
0 to 0.5
Sulfur (S), % 0
0 to 0.025
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 5.0 to 6.5
0
Zirconium (Zr), % 0.050 to 0.25
0
Residuals, % 0 to 0.15
0