MakeItFrom.com
Menu (ESC)

7003 Aluminum vs. Austenitic Nodular Cast Iron

7003 aluminum belongs to the aluminum alloys classification, while austenitic nodular cast iron belongs to the iron alloys. There are 23 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7003 aluminum and the bottom bar is austenitic nodular cast iron.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
180 to 190
Elongation at Break, % 11
6.8 to 34
Poisson's Ratio 0.32
0.29 to 0.3
Shear Modulus, GPa 26
70 to 72
Tensile Strength: Ultimate (UTS), MPa 350 to 390
430 to 500
Tensile Strength: Yield (Proof), MPa 300 to 310
190 to 240

Thermal Properties

Latent Heat of Fusion, J/g 380
280 to 350
Melting Completion (Liquidus), °C 630
1340 to 1400
Melting Onset (Solidus), °C 510
1300 to 1360
Specific Heat Capacity, J/kg-K 870
470 to 490
Thermal Expansion, µm/m-K 24
13 to 14

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
16 to 25
Density, g/cm3 2.9
7.7 to 8.0
Embodied Carbon, kg CO2/kg material 8.1
3.5 to 4.9
Embodied Energy, MJ/kg 150
48 to 68
Embodied Water, L/kg 1140
91 to 120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 37 to 41
24 to 140
Resilience: Unit (Modulus of Resilience), kJ/m3 630 to 710
98 to 160
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 47
24 to 25
Strength to Weight: Axial, points 33 to 37
15 to 18
Strength to Weight: Bending, points 37 to 40
16 to 18
Thermal Shock Resistance, points 15 to 17
12 to 15

Comparable Variants