MakeItFrom.com
Menu (ESC)

7003 Aluminum vs. EN 1.4416 Stainless Steel

7003 aluminum belongs to the aluminum alloys classification, while EN 1.4416 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7003 aluminum and the bottom bar is EN 1.4416 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
200
Elongation at Break, % 11
34
Fatigue Strength, MPa 130 to 150
170
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 26
79
Tensile Strength: Ultimate (UTS), MPa 350 to 390
500
Tensile Strength: Yield (Proof), MPa 300 to 310
210

Thermal Properties

Latent Heat of Fusion, J/g 380
300
Maximum Temperature: Mechanical, °C 200
1100
Melting Completion (Liquidus), °C 630
1450
Melting Onset (Solidus), °C 510
1400
Specific Heat Capacity, J/kg-K 870
470
Thermal Conductivity, W/m-K 150
12
Thermal Expansion, µm/m-K 24
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 36
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 110
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
31
Density, g/cm3 2.9
8.1
Embodied Carbon, kg CO2/kg material 8.1
5.8
Embodied Energy, MJ/kg 150
79
Embodied Water, L/kg 1140
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 37 to 41
140
Resilience: Unit (Modulus of Resilience), kJ/m3 630 to 710
110
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 47
24
Strength to Weight: Axial, points 33 to 37
17
Strength to Weight: Bending, points 37 to 40
17
Thermal Diffusivity, mm2/s 59
3.2
Thermal Shock Resistance, points 15 to 17
12

Alloy Composition

Aluminum (Al), % 90.6 to 94.5
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0 to 0.2
19 to 21
Copper (Cu), % 0 to 0.2
0
Iron (Fe), % 0 to 0.35
45.2 to 52.4
Magnesium (Mg), % 0.5 to 1.0
0
Manganese (Mn), % 0 to 0.3
0 to 1.0
Molybdenum (Mo), % 0
4.5 to 5.5
Nickel (Ni), % 0
24 to 26
Nitrogen (N), % 0
0.12 to 0.2
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0 to 0.3
0 to 1.0
Sulfur (S), % 0
0 to 0.020
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 5.0 to 6.5
0
Zirconium (Zr), % 0.050 to 0.25
0
Residuals, % 0 to 0.15
0