MakeItFrom.com
Menu (ESC)

7003 Aluminum vs. EN 2.4964 Cobalt

7003 aluminum belongs to the aluminum alloys classification, while EN 2.4964 cobalt belongs to the cobalt alloys. There are 27 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7003 aluminum and the bottom bar is EN 2.4964 cobalt.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
220
Elongation at Break, % 11
40
Fatigue Strength, MPa 130 to 150
220
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 26
86
Tensile Strength: Ultimate (UTS), MPa 350 to 390
960
Tensile Strength: Yield (Proof), MPa 300 to 310
390

Thermal Properties

Latent Heat of Fusion, J/g 380
290
Melting Completion (Liquidus), °C 630
1630
Melting Onset (Solidus), °C 510
1550
Specific Heat Capacity, J/kg-K 870
400
Thermal Conductivity, W/m-K 150
15
Thermal Expansion, µm/m-K 24
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 36
1.9
Electrical Conductivity: Equal Weight (Specific), % IACS 110
1.8

Otherwise Unclassified Properties

Density, g/cm3 2.9
9.6
Embodied Carbon, kg CO2/kg material 8.1
9.8
Embodied Energy, MJ/kg 150
140
Embodied Water, L/kg 1140
450

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 37 to 41
310
Resilience: Unit (Modulus of Resilience), kJ/m3 630 to 710
340
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 47
21
Strength to Weight: Axial, points 33 to 37
28
Strength to Weight: Bending, points 37 to 40
23
Thermal Diffusivity, mm2/s 59
3.9
Thermal Shock Resistance, points 15 to 17
25

Alloy Composition

Aluminum (Al), % 90.6 to 94.5
0
Carbon (C), % 0
0.050 to 0.15
Chromium (Cr), % 0 to 0.2
19 to 21
Cobalt (Co), % 0
46.4 to 58
Copper (Cu), % 0 to 0.2
0
Iron (Fe), % 0 to 0.35
0 to 3.0
Magnesium (Mg), % 0.5 to 1.0
0
Manganese (Mn), % 0 to 0.3
0 to 2.0
Nickel (Ni), % 0
9.0 to 11
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0 to 0.3
0 to 0.4
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.2
0
Tungsten (W), % 0
14 to 16
Zinc (Zn), % 5.0 to 6.5
0
Zirconium (Zr), % 0.050 to 0.25
0
Residuals, % 0 to 0.15
0