MakeItFrom.com
Menu (ESC)

7003 Aluminum vs. EN AC-46200 Aluminum

Both 7003 aluminum and EN AC-46200 aluminum are aluminum alloys. They have 88% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 7003 aluminum and the bottom bar is EN AC-46200 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
73
Elongation at Break, % 11
1.1
Fatigue Strength, MPa 130 to 150
87
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 26
27
Tensile Strength: Ultimate (UTS), MPa 350 to 390
210
Tensile Strength: Yield (Proof), MPa 300 to 310
130

Thermal Properties

Latent Heat of Fusion, J/g 380
510
Maximum Temperature: Mechanical, °C 200
170
Melting Completion (Liquidus), °C 630
620
Melting Onset (Solidus), °C 510
540
Specific Heat Capacity, J/kg-K 870
880
Thermal Conductivity, W/m-K 150
110
Thermal Expansion, µm/m-K 24
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 36
28
Electrical Conductivity: Equal Weight (Specific), % IACS 110
88

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
10
Density, g/cm3 2.9
2.8
Embodied Carbon, kg CO2/kg material 8.1
7.7
Embodied Energy, MJ/kg 150
140
Embodied Water, L/kg 1140
1060

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 37 to 41
2.0
Resilience: Unit (Modulus of Resilience), kJ/m3 630 to 710
110
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 47
50
Strength to Weight: Axial, points 33 to 37
21
Strength to Weight: Bending, points 37 to 40
28
Thermal Diffusivity, mm2/s 59
44
Thermal Shock Resistance, points 15 to 17
9.5

Alloy Composition

Aluminum (Al), % 90.6 to 94.5
82.6 to 90.3
Chromium (Cr), % 0 to 0.2
0
Copper (Cu), % 0 to 0.2
2.0 to 3.5
Iron (Fe), % 0 to 0.35
0 to 0.8
Lead (Pb), % 0
0 to 0.25
Magnesium (Mg), % 0.5 to 1.0
0.050 to 0.55
Manganese (Mn), % 0 to 0.3
0.15 to 0.65
Nickel (Ni), % 0
0 to 0.35
Silicon (Si), % 0 to 0.3
7.5 to 9.5
Tin (Sn), % 0
0 to 0.15
Titanium (Ti), % 0 to 0.2
0 to 0.25
Zinc (Zn), % 5.0 to 6.5
0 to 1.2
Zirconium (Zr), % 0.050 to 0.25
0
Residuals, % 0
0 to 0.25