MakeItFrom.com
Menu (ESC)

7003 Aluminum vs. Grade CZ100 Nickel

7003 aluminum belongs to the aluminum alloys classification, while grade CZ100 nickel belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7003 aluminum and the bottom bar is grade CZ100 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
180
Elongation at Break, % 11
11
Fatigue Strength, MPa 130 to 150
68
Poisson's Ratio 0.32
0.31
Shear Modulus, GPa 26
69
Tensile Strength: Ultimate (UTS), MPa 350 to 390
390
Tensile Strength: Yield (Proof), MPa 300 to 310
140

Thermal Properties

Latent Heat of Fusion, J/g 380
310
Maximum Temperature: Mechanical, °C 200
900
Melting Completion (Liquidus), °C 630
1350
Melting Onset (Solidus), °C 510
1300
Specific Heat Capacity, J/kg-K 870
450
Thermal Conductivity, W/m-K 150
73
Thermal Expansion, µm/m-K 24
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 36
19
Electrical Conductivity: Equal Weight (Specific), % IACS 110
19

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
60
Density, g/cm3 2.9
8.8
Embodied Carbon, kg CO2/kg material 8.1
10
Embodied Energy, MJ/kg 150
140
Embodied Water, L/kg 1140
230

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 37 to 41
35
Resilience: Unit (Modulus of Resilience), kJ/m3 630 to 710
54
Stiffness to Weight: Axial, points 13
12
Stiffness to Weight: Bending, points 47
22
Strength to Weight: Axial, points 33 to 37
12
Strength to Weight: Bending, points 37 to 40
14
Thermal Diffusivity, mm2/s 59
19
Thermal Shock Resistance, points 15 to 17
14

Alloy Composition

Aluminum (Al), % 90.6 to 94.5
0
Carbon (C), % 0
0 to 1.0
Chromium (Cr), % 0 to 0.2
0
Copper (Cu), % 0 to 0.2
0 to 1.3
Iron (Fe), % 0 to 0.35
0 to 3.0
Magnesium (Mg), % 0.5 to 1.0
0
Manganese (Mn), % 0 to 0.3
0 to 1.5
Nickel (Ni), % 0
95 to 100
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.3
0 to 2.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 5.0 to 6.5
0
Zirconium (Zr), % 0.050 to 0.25
0
Residuals, % 0 to 0.15
0