MakeItFrom.com
Menu (ESC)

7003 Aluminum vs. Nickel 22

7003 aluminum belongs to the aluminum alloys classification, while nickel 22 belongs to the nickel alloys. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7003 aluminum and the bottom bar is nickel 22.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
220
Elongation at Break, % 11
49
Fatigue Strength, MPa 130 to 150
330
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 26
84
Shear Strength, MPa 210 to 230
560
Tensile Strength: Ultimate (UTS), MPa 350 to 390
790
Tensile Strength: Yield (Proof), MPa 300 to 310
360

Thermal Properties

Latent Heat of Fusion, J/g 380
320
Maximum Temperature: Mechanical, °C 200
990
Melting Completion (Liquidus), °C 630
1390
Melting Onset (Solidus), °C 510
1360
Specific Heat Capacity, J/kg-K 870
430
Thermal Conductivity, W/m-K 150
10
Thermal Expansion, µm/m-K 24
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 36
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 110
1.5

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
70
Density, g/cm3 2.9
8.9
Embodied Carbon, kg CO2/kg material 8.1
12
Embodied Energy, MJ/kg 150
170
Embodied Water, L/kg 1140
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 37 to 41
320
Resilience: Unit (Modulus of Resilience), kJ/m3 630 to 710
300
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 47
22
Strength to Weight: Axial, points 33 to 37
25
Strength to Weight: Bending, points 37 to 40
21
Thermal Diffusivity, mm2/s 59
2.7
Thermal Shock Resistance, points 15 to 17
24

Alloy Composition

Aluminum (Al), % 90.6 to 94.5
0
Carbon (C), % 0
0 to 0.015
Chromium (Cr), % 0 to 0.2
20 to 22.5
Cobalt (Co), % 0
0 to 2.5
Copper (Cu), % 0 to 0.2
0
Iron (Fe), % 0 to 0.35
2.0 to 6.0
Magnesium (Mg), % 0.5 to 1.0
0
Manganese (Mn), % 0 to 0.3
0 to 0.015
Molybdenum (Mo), % 0
12.5 to 14.5
Nickel (Ni), % 0
50.8 to 63
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0 to 0.3
0 to 0.080
Sulfur (S), % 0
0 to 0.020
Titanium (Ti), % 0 to 0.2
0
Tungsten (W), % 0
2.5 to 3.5
Vanadium (V), % 0
0 to 0.35
Zinc (Zn), % 5.0 to 6.5
0
Zirconium (Zr), % 0.050 to 0.25
0
Residuals, % 0 to 0.15
0