MakeItFrom.com
Menu (ESC)

7003 Aluminum vs. Nickel 600

7003 aluminum belongs to the aluminum alloys classification, while nickel 600 belongs to the nickel alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7003 aluminum and the bottom bar is nickel 600.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
190
Elongation at Break, % 11
3.4 to 35
Fatigue Strength, MPa 130 to 150
220 to 300
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 26
75
Shear Strength, MPa 210 to 230
430 to 570
Tensile Strength: Ultimate (UTS), MPa 350 to 390
650 to 990
Tensile Strength: Yield (Proof), MPa 300 to 310
270 to 760

Thermal Properties

Latent Heat of Fusion, J/g 380
310
Maximum Temperature: Mechanical, °C 200
1100
Melting Completion (Liquidus), °C 630
1410
Melting Onset (Solidus), °C 510
1350
Specific Heat Capacity, J/kg-K 870
460
Thermal Conductivity, W/m-K 150
14
Thermal Expansion, µm/m-K 24
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 36
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 110
1.8

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
55
Density, g/cm3 2.9
8.5
Embodied Carbon, kg CO2/kg material 8.1
9.0
Embodied Energy, MJ/kg 150
130
Embodied Water, L/kg 1140
250

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 37 to 41
31 to 180
Resilience: Unit (Modulus of Resilience), kJ/m3 630 to 710
190 to 1490
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 47
23
Strength to Weight: Axial, points 33 to 37
21 to 32
Strength to Weight: Bending, points 37 to 40
20 to 26
Thermal Diffusivity, mm2/s 59
3.6
Thermal Shock Resistance, points 15 to 17
19 to 29

Alloy Composition

Aluminum (Al), % 90.6 to 94.5
0
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0 to 0.2
14 to 17
Copper (Cu), % 0 to 0.2
0 to 0.5
Iron (Fe), % 0 to 0.35
6.0 to 10
Magnesium (Mg), % 0.5 to 1.0
0
Manganese (Mn), % 0 to 0.3
0 to 1.0
Nickel (Ni), % 0
72 to 80
Silicon (Si), % 0 to 0.3
0 to 0.5
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 5.0 to 6.5
0
Zirconium (Zr), % 0.050 to 0.25
0
Residuals, % 0 to 0.15
0