MakeItFrom.com
Menu (ESC)

7003 Aluminum vs. Nickel 617

7003 aluminum belongs to the aluminum alloys classification, while nickel 617 belongs to the nickel alloys. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7003 aluminum and the bottom bar is nickel 617.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
210
Elongation at Break, % 11
40
Fatigue Strength, MPa 130 to 150
220
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 26
80
Shear Strength, MPa 210 to 230
510
Tensile Strength: Ultimate (UTS), MPa 350 to 390
740
Tensile Strength: Yield (Proof), MPa 300 to 310
280

Thermal Properties

Latent Heat of Fusion, J/g 380
330
Maximum Temperature: Mechanical, °C 200
1010
Melting Completion (Liquidus), °C 630
1380
Melting Onset (Solidus), °C 510
1330
Specific Heat Capacity, J/kg-K 870
450
Thermal Conductivity, W/m-K 150
13
Thermal Expansion, µm/m-K 24
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 36
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 110
1.5

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
75
Density, g/cm3 2.9
8.5
Embodied Carbon, kg CO2/kg material 8.1
10
Embodied Energy, MJ/kg 150
140
Embodied Water, L/kg 1140
350

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 37 to 41
230
Resilience: Unit (Modulus of Resilience), kJ/m3 630 to 710
190
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 47
23
Strength to Weight: Axial, points 33 to 37
24
Strength to Weight: Bending, points 37 to 40
21
Thermal Diffusivity, mm2/s 59
3.5
Thermal Shock Resistance, points 15 to 17
21

Alloy Composition

Aluminum (Al), % 90.6 to 94.5
0.8 to 1.5
Boron (B), % 0
0 to 0.0060
Carbon (C), % 0
0.050 to 0.15
Chromium (Cr), % 0 to 0.2
20 to 24
Cobalt (Co), % 0
10 to 15
Copper (Cu), % 0 to 0.2
0 to 0.5
Iron (Fe), % 0 to 0.35
0 to 3.0
Magnesium (Mg), % 0.5 to 1.0
0
Manganese (Mn), % 0 to 0.3
0 to 1.0
Molybdenum (Mo), % 0
8.0 to 10
Nickel (Ni), % 0
44.5 to 62
Silicon (Si), % 0 to 0.3
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 5.0 to 6.5
0
Zirconium (Zr), % 0.050 to 0.25
0
Residuals, % 0 to 0.15
0