MakeItFrom.com
Menu (ESC)

7003 Aluminum vs. SAE-AISI M50 Steel

7003 aluminum belongs to the aluminum alloys classification, while SAE-AISI M50 steel belongs to the iron alloys. There are 23 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7003 aluminum and the bottom bar is SAE-AISI M50 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
190
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 26
75
Tensile Strength: Ultimate (UTS), MPa 350 to 390
720 to 2250

Thermal Properties

Latent Heat of Fusion, J/g 380
260
Melting Completion (Liquidus), °C 630
1480
Melting Onset (Solidus), °C 510
1440
Specific Heat Capacity, J/kg-K 870
470
Thermal Conductivity, W/m-K 150
35
Thermal Expansion, µm/m-K 24
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 36
8.7
Electrical Conductivity: Equal Weight (Specific), % IACS 110
10

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.0
Density, g/cm3 2.9
7.9
Embodied Carbon, kg CO2/kg material 8.1
5.1
Embodied Energy, MJ/kg 150
74
Embodied Water, L/kg 1140
83

Common Calculations

Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 47
25
Strength to Weight: Axial, points 33 to 37
26 to 80
Strength to Weight: Bending, points 37 to 40
23 to 49
Thermal Diffusivity, mm2/s 59
9.7
Thermal Shock Resistance, points 15 to 17
21 to 66

Alloy Composition

Aluminum (Al), % 90.6 to 94.5
0
Carbon (C), % 0
0.78 to 0.88
Chromium (Cr), % 0 to 0.2
3.8 to 4.5
Copper (Cu), % 0 to 0.2
0 to 0.25
Iron (Fe), % 0 to 0.35
87 to 90.4
Magnesium (Mg), % 0.5 to 1.0
0
Manganese (Mn), % 0 to 0.3
0.15 to 0.45
Molybdenum (Mo), % 0
3.9 to 4.8
Nickel (Ni), % 0
0 to 0.3
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.3
0.2 to 0.6
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.2
0
Vanadium (V), % 0
0.8 to 1.3
Zinc (Zn), % 5.0 to 6.5
0
Zirconium (Zr), % 0.050 to 0.25
0
Residuals, % 0 to 0.15
0