MakeItFrom.com
Menu (ESC)

7003 Aluminum vs. C93700 Bronze

7003 aluminum belongs to the aluminum alloys classification, while C93700 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7003 aluminum and the bottom bar is C93700 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
99
Elongation at Break, % 11
20
Fatigue Strength, MPa 130 to 150
90
Poisson's Ratio 0.32
0.35
Shear Modulus, GPa 26
37
Tensile Strength: Ultimate (UTS), MPa 350 to 390
240
Tensile Strength: Yield (Proof), MPa 300 to 310
130

Thermal Properties

Latent Heat of Fusion, J/g 380
170
Maximum Temperature: Mechanical, °C 200
140
Melting Completion (Liquidus), °C 630
930
Melting Onset (Solidus), °C 510
760
Specific Heat Capacity, J/kg-K 870
350
Thermal Conductivity, W/m-K 150
47
Thermal Expansion, µm/m-K 24
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 36
10
Electrical Conductivity: Equal Weight (Specific), % IACS 110
10

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
33
Density, g/cm3 2.9
8.9
Embodied Carbon, kg CO2/kg material 8.1
3.5
Embodied Energy, MJ/kg 150
57
Embodied Water, L/kg 1140
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 37 to 41
40
Resilience: Unit (Modulus of Resilience), kJ/m3 630 to 710
79
Stiffness to Weight: Axial, points 13
6.2
Stiffness to Weight: Bending, points 47
17
Strength to Weight: Axial, points 33 to 37
7.5
Strength to Weight: Bending, points 37 to 40
9.6
Thermal Diffusivity, mm2/s 59
15
Thermal Shock Resistance, points 15 to 17
9.4

Alloy Composition

Aluminum (Al), % 90.6 to 94.5
0 to 0.0050
Antimony (Sb), % 0
0 to 0.5
Chromium (Cr), % 0 to 0.2
0
Copper (Cu), % 0 to 0.2
78 to 82
Iron (Fe), % 0 to 0.35
0 to 0.15
Lead (Pb), % 0
8.0 to 11
Magnesium (Mg), % 0.5 to 1.0
0
Manganese (Mn), % 0 to 0.3
0
Nickel (Ni), % 0
0 to 1.0
Phosphorus (P), % 0
0 to 1.5
Silicon (Si), % 0 to 0.3
0 to 0.0050
Sulfur (S), % 0
0 to 0.080
Tin (Sn), % 0
9.0 to 11
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 5.0 to 6.5
0 to 0.8
Zirconium (Zr), % 0.050 to 0.25
0
Residuals, % 0
0 to 1.0