MakeItFrom.com
Menu (ESC)

7003 Aluminum vs. C96200 Copper-nickel

7003 aluminum belongs to the aluminum alloys classification, while C96200 copper-nickel belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7003 aluminum and the bottom bar is C96200 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
120
Elongation at Break, % 11
23
Poisson's Ratio 0.32
0.34
Shear Modulus, GPa 26
46
Tensile Strength: Ultimate (UTS), MPa 350 to 390
350
Tensile Strength: Yield (Proof), MPa 300 to 310
190

Thermal Properties

Latent Heat of Fusion, J/g 380
220
Maximum Temperature: Mechanical, °C 200
220
Melting Completion (Liquidus), °C 630
1150
Melting Onset (Solidus), °C 510
1100
Specific Heat Capacity, J/kg-K 870
390
Thermal Conductivity, W/m-K 150
45
Thermal Expansion, µm/m-K 24
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 36
11
Electrical Conductivity: Equal Weight (Specific), % IACS 110
11

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
36
Density, g/cm3 2.9
8.9
Embodied Carbon, kg CO2/kg material 8.1
3.8
Embodied Energy, MJ/kg 150
58
Embodied Water, L/kg 1140
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 37 to 41
68
Resilience: Unit (Modulus of Resilience), kJ/m3 630 to 710
150
Stiffness to Weight: Axial, points 13
7.8
Stiffness to Weight: Bending, points 47
19
Strength to Weight: Axial, points 33 to 37
11
Strength to Weight: Bending, points 37 to 40
13
Thermal Diffusivity, mm2/s 59
13
Thermal Shock Resistance, points 15 to 17
12

Alloy Composition

Aluminum (Al), % 90.6 to 94.5
0
Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0 to 0.2
0
Copper (Cu), % 0 to 0.2
83.6 to 90
Iron (Fe), % 0 to 0.35
1.0 to 1.8
Lead (Pb), % 0
0 to 0.010
Magnesium (Mg), % 0.5 to 1.0
0
Manganese (Mn), % 0 to 0.3
0 to 1.5
Nickel (Ni), % 0
9.0 to 11
Niobium (Nb), % 0
0 to 1.0
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0 to 0.3
0 to 0.5
Sulfur (S), % 0
0 to 0.020
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 5.0 to 6.5
0
Zirconium (Zr), % 0.050 to 0.25
0
Residuals, % 0
0 to 0.5