MakeItFrom.com
Menu (ESC)

7003 Aluminum vs. N06058 Nickel

7003 aluminum belongs to the aluminum alloys classification, while N06058 nickel belongs to the nickel alloys. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7003 aluminum and the bottom bar is N06058 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
220
Elongation at Break, % 11
45
Fatigue Strength, MPa 130 to 150
350
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 26
86
Shear Strength, MPa 210 to 230
600
Tensile Strength: Ultimate (UTS), MPa 350 to 390
860
Tensile Strength: Yield (Proof), MPa 300 to 310
410

Thermal Properties

Latent Heat of Fusion, J/g 380
330
Maximum Temperature: Mechanical, °C 200
980
Melting Completion (Liquidus), °C 630
1540
Melting Onset (Solidus), °C 510
1490
Specific Heat Capacity, J/kg-K 870
420
Thermal Conductivity, W/m-K 150
9.8
Thermal Expansion, µm/m-K 24
12

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
70
Density, g/cm3 2.9
8.8
Embodied Carbon, kg CO2/kg material 8.1
13
Embodied Energy, MJ/kg 150
170
Embodied Water, L/kg 1140
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 37 to 41
320
Resilience: Unit (Modulus of Resilience), kJ/m3 630 to 710
370
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 47
23
Strength to Weight: Axial, points 33 to 37
27
Strength to Weight: Bending, points 37 to 40
23
Thermal Diffusivity, mm2/s 59
2.6
Thermal Shock Resistance, points 15 to 17
23

Alloy Composition

Aluminum (Al), % 90.6 to 94.5
0 to 0.4
Carbon (C), % 0
0 to 0.010
Chromium (Cr), % 0 to 0.2
20 to 23
Cobalt (Co), % 0
0 to 0.3
Copper (Cu), % 0 to 0.2
0 to 0.5
Iron (Fe), % 0 to 0.35
0 to 1.5
Magnesium (Mg), % 0.5 to 1.0
0
Manganese (Mn), % 0 to 0.3
0 to 0.5
Molybdenum (Mo), % 0
19 to 21
Nickel (Ni), % 0
52.2 to 61
Nitrogen (N), % 0
0.020 to 0.15
Phosphorus (P), % 0
0 to 0.015
Silicon (Si), % 0 to 0.3
0 to 0.1
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0 to 0.2
0
Tungsten (W), % 0
0 to 0.3
Zinc (Zn), % 5.0 to 6.5
0
Zirconium (Zr), % 0.050 to 0.25
0
Residuals, % 0 to 0.15
0