MakeItFrom.com
Menu (ESC)

7003 Aluminum vs. N06603 Nickel

7003 aluminum belongs to the aluminum alloys classification, while N06603 nickel belongs to the nickel alloys. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7003 aluminum and the bottom bar is N06603 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
190
Elongation at Break, % 11
28
Fatigue Strength, MPa 130 to 150
230
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 26
76
Shear Strength, MPa 210 to 230
480
Tensile Strength: Ultimate (UTS), MPa 350 to 390
740
Tensile Strength: Yield (Proof), MPa 300 to 310
340

Thermal Properties

Latent Heat of Fusion, J/g 380
320
Maximum Temperature: Mechanical, °C 200
1000
Melting Completion (Liquidus), °C 630
1340
Melting Onset (Solidus), °C 510
1300
Specific Heat Capacity, J/kg-K 870
480
Thermal Conductivity, W/m-K 150
11
Thermal Expansion, µm/m-K 24
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 36
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 110
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
50
Density, g/cm3 2.9
8.2
Embodied Carbon, kg CO2/kg material 8.1
8.4
Embodied Energy, MJ/kg 150
120
Embodied Water, L/kg 1140
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 37 to 41
170
Resilience: Unit (Modulus of Resilience), kJ/m3 630 to 710
300
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 47
24
Strength to Weight: Axial, points 33 to 37
25
Strength to Weight: Bending, points 37 to 40
22
Thermal Diffusivity, mm2/s 59
2.9
Thermal Shock Resistance, points 15 to 17
20

Alloy Composition

Aluminum (Al), % 90.6 to 94.5
2.4 to 3.0
Carbon (C), % 0
0.2 to 0.4
Chromium (Cr), % 0 to 0.2
24 to 26
Copper (Cu), % 0 to 0.2
0 to 0.5
Iron (Fe), % 0 to 0.35
8.0 to 11
Magnesium (Mg), % 0.5 to 1.0
0
Manganese (Mn), % 0 to 0.3
0 to 0.15
Nickel (Ni), % 0
57.7 to 65.6
Phosphorus (P), % 0
0 to 0.2
Silicon (Si), % 0 to 0.3
0 to 0.5
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0 to 0.2
0.010 to 0.25
Yttrium (Y), % 0
0.010 to 0.15
Zinc (Zn), % 5.0 to 6.5
0.010 to 0.1
Zirconium (Zr), % 0.050 to 0.25
0
Residuals, % 0 to 0.15
0