MakeItFrom.com
Menu (ESC)

7003 Aluminum vs. R31233 Cobalt

7003 aluminum belongs to the aluminum alloys classification, while R31233 cobalt belongs to the cobalt alloys. There are 27 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7003 aluminum and the bottom bar is R31233 cobalt.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
220
Elongation at Break, % 11
17
Fatigue Strength, MPa 130 to 150
220
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 26
85
Tensile Strength: Ultimate (UTS), MPa 350 to 390
1020
Tensile Strength: Yield (Proof), MPa 300 to 310
420

Thermal Properties

Latent Heat of Fusion, J/g 380
320
Melting Completion (Liquidus), °C 630
1350
Melting Onset (Solidus), °C 510
1330
Specific Heat Capacity, J/kg-K 870
440
Thermal Conductivity, W/m-K 150
12
Thermal Expansion, µm/m-K 24
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 36
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 110
2.1

Otherwise Unclassified Properties

Density, g/cm3 2.9
8.6
Embodied Carbon, kg CO2/kg material 8.1
8.4
Embodied Energy, MJ/kg 150
110
Embodied Water, L/kg 1140
480

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 37 to 41
140
Resilience: Unit (Modulus of Resilience), kJ/m3 630 to 710
410
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 47
23
Strength to Weight: Axial, points 33 to 37
33
Strength to Weight: Bending, points 37 to 40
26
Thermal Diffusivity, mm2/s 59
3.2
Thermal Shock Resistance, points 15 to 17
25

Alloy Composition

Aluminum (Al), % 90.6 to 94.5
0
Boron (B), % 0
0 to 0.015
Carbon (C), % 0
0.020 to 0.1
Chromium (Cr), % 0 to 0.2
23.5 to 27.5
Cobalt (Co), % 0
44.7 to 63.3
Copper (Cu), % 0 to 0.2
0
Iron (Fe), % 0 to 0.35
1.0 to 5.0
Magnesium (Mg), % 0.5 to 1.0
0
Manganese (Mn), % 0 to 0.3
0.1 to 1.5
Molybdenum (Mo), % 0
4.0 to 6.0
Nickel (Ni), % 0
7.0 to 11
Nitrogen (N), % 0
0.030 to 0.12
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.3
0.050 to 1.0
Sulfur (S), % 0
0 to 0.020
Titanium (Ti), % 0 to 0.2
0
Tungsten (W), % 0
1.0 to 3.0
Zinc (Zn), % 5.0 to 6.5
0
Zirconium (Zr), % 0.050 to 0.25
0
Residuals, % 0 to 0.15
0