MakeItFrom.com
Menu (ESC)

7003 Aluminum vs. S40910 Stainless Steel

7003 aluminum belongs to the aluminum alloys classification, while S40910 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7003 aluminum and the bottom bar is S40910 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
190
Elongation at Break, % 11
23
Fatigue Strength, MPa 130 to 150
130
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 26
75
Shear Strength, MPa 210 to 230
270
Tensile Strength: Ultimate (UTS), MPa 350 to 390
430
Tensile Strength: Yield (Proof), MPa 300 to 310
190

Thermal Properties

Latent Heat of Fusion, J/g 380
270
Maximum Temperature: Mechanical, °C 200
710
Melting Completion (Liquidus), °C 630
1450
Melting Onset (Solidus), °C 510
1410
Specific Heat Capacity, J/kg-K 870
480
Thermal Conductivity, W/m-K 150
26
Thermal Expansion, µm/m-K 24
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 36
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 110
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
7.0
Density, g/cm3 2.9
7.8
Embodied Carbon, kg CO2/kg material 8.1
2.0
Embodied Energy, MJ/kg 150
28
Embodied Water, L/kg 1140
94

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 37 to 41
80
Resilience: Unit (Modulus of Resilience), kJ/m3 630 to 710
94
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 47
25
Strength to Weight: Axial, points 33 to 37
16
Strength to Weight: Bending, points 37 to 40
16
Thermal Diffusivity, mm2/s 59
6.9
Thermal Shock Resistance, points 15 to 17
16

Alloy Composition

Aluminum (Al), % 90.6 to 94.5
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0 to 0.2
10.5 to 11.7
Copper (Cu), % 0 to 0.2
0
Iron (Fe), % 0 to 0.35
85 to 89.5
Magnesium (Mg), % 0.5 to 1.0
0
Manganese (Mn), % 0 to 0.3
0 to 1.0
Nickel (Ni), % 0
0 to 0.5
Niobium (Nb), % 0
0 to 0.17
Nitrogen (N), % 0
0 to 0.030
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.3
0 to 1.0
Sulfur (S), % 0
0 to 0.020
Titanium (Ti), % 0 to 0.2
0 to 0.5
Zinc (Zn), % 5.0 to 6.5
0
Zirconium (Zr), % 0.050 to 0.25
0
Residuals, % 0 to 0.15
0