MakeItFrom.com
Menu (ESC)

7003 Aluminum vs. WE54A Magnesium

7003 aluminum belongs to the aluminum alloys classification, while WE54A magnesium belongs to the magnesium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 7003 aluminum and the bottom bar is WE54A magnesium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
44
Elongation at Break, % 11
4.3 to 5.6
Fatigue Strength, MPa 130 to 150
98 to 130
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 26
17
Shear Strength, MPa 210 to 230
150 to 170
Tensile Strength: Ultimate (UTS), MPa 350 to 390
270 to 300
Tensile Strength: Yield (Proof), MPa 300 to 310
180

Thermal Properties

Latent Heat of Fusion, J/g 380
330
Maximum Temperature: Mechanical, °C 200
170
Melting Completion (Liquidus), °C 630
640
Melting Onset (Solidus), °C 510
570
Specific Heat Capacity, J/kg-K 870
960
Thermal Conductivity, W/m-K 150
52
Thermal Expansion, µm/m-K 24
25

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 36
10
Electrical Conductivity: Equal Weight (Specific), % IACS 110
47

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
34
Density, g/cm3 2.9
1.9
Embodied Carbon, kg CO2/kg material 8.1
29
Embodied Energy, MJ/kg 150
260
Embodied Water, L/kg 1140
900

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 37 to 41
10 to 14
Resilience: Unit (Modulus of Resilience), kJ/m3 630 to 710
360 to 380
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 47
62
Strength to Weight: Axial, points 33 to 37
39 to 43
Strength to Weight: Bending, points 37 to 40
49 to 51
Thermal Diffusivity, mm2/s 59
28
Thermal Shock Resistance, points 15 to 17
18 to 19

Alloy Composition

Aluminum (Al), % 90.6 to 94.5
0
Chromium (Cr), % 0 to 0.2
0
Copper (Cu), % 0 to 0.2
0 to 0.030
Iron (Fe), % 0 to 0.35
0 to 0.010
Lithium (Li), % 0
0 to 0.2
Magnesium (Mg), % 0.5 to 1.0
88.7 to 93.4
Manganese (Mn), % 0 to 0.3
0 to 0.030
Nickel (Ni), % 0
0 to 0.0050
Silicon (Si), % 0 to 0.3
0 to 0.010
Titanium (Ti), % 0 to 0.2
0
Unspecified Rare Earths, % 0
1.5 to 4.0
Yttrium (Y), % 0
4.8 to 5.5
Zinc (Zn), % 5.0 to 6.5
0 to 0.2
Zirconium (Zr), % 0.050 to 0.25
0.4 to 1.0
Residuals, % 0
0 to 0.3

Comparable Variants