MakeItFrom.com
Menu (ESC)

7005 Aluminum vs. 7003 Aluminum

Both 7005 aluminum and 7003 aluminum are aluminum alloys. They have a very high 99% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 7005 aluminum and the bottom bar is 7003 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
70
Elongation at Break, % 10 to 20
11
Fatigue Strength, MPa 100 to 190
130 to 150
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 26
26
Shear Strength, MPa 120 to 230
210 to 230
Tensile Strength: Ultimate (UTS), MPa 200 to 400
350 to 390
Tensile Strength: Yield (Proof), MPa 95 to 350
300 to 310

Thermal Properties

Latent Heat of Fusion, J/g 380
380
Maximum Temperature: Mechanical, °C 200
200
Melting Completion (Liquidus), °C 640
630
Melting Onset (Solidus), °C 610
510
Specific Heat Capacity, J/kg-K 880
870
Thermal Conductivity, W/m-K 140 to 170
150
Thermal Expansion, µm/m-K 23
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35 to 43
36
Electrical Conductivity: Equal Weight (Specific), % IACS 110 to 130
110

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.9
2.9
Embodied Carbon, kg CO2/kg material 8.3
8.1
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1150
1140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 32 to 57
37 to 41
Resilience: Unit (Modulus of Resilience), kJ/m3 65 to 850
630 to 710
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 47
47
Strength to Weight: Axial, points 19 to 38
33 to 37
Strength to Weight: Bending, points 26 to 41
37 to 40
Thermal Diffusivity, mm2/s 54 to 65
59
Thermal Shock Resistance, points 8.7 to 18
15 to 17

Alloy Composition

Aluminum (Al), % 91 to 94.7
90.6 to 94.5
Chromium (Cr), % 0.060 to 0.2
0 to 0.2
Copper (Cu), % 0 to 0.1
0 to 0.2
Iron (Fe), % 0 to 0.4
0 to 0.35
Magnesium (Mg), % 1.0 to 1.8
0.5 to 1.0
Manganese (Mn), % 0.2 to 0.7
0 to 0.3
Silicon (Si), % 0 to 0.35
0 to 0.3
Titanium (Ti), % 0.010 to 0.060
0 to 0.2
Zinc (Zn), % 4.0 to 5.0
5.0 to 6.5
Zirconium (Zr), % 0.080 to 0.2
0.050 to 0.25
Residuals, % 0
0 to 0.15

Comparable Variants