MakeItFrom.com
Menu (ESC)

7005 Aluminum vs. AISI 410Cb Stainless Steel

7005 aluminum belongs to the aluminum alloys classification, while AISI 410Cb stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7005 aluminum and the bottom bar is AISI 410Cb stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
190
Elongation at Break, % 10 to 20
15
Fatigue Strength, MPa 100 to 190
180 to 460
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
76
Shear Strength, MPa 120 to 230
340 to 590
Tensile Strength: Ultimate (UTS), MPa 200 to 400
550 to 960
Tensile Strength: Yield (Proof), MPa 95 to 350
310 to 790

Thermal Properties

Latent Heat of Fusion, J/g 380
270
Maximum Temperature: Mechanical, °C 200
730
Melting Completion (Liquidus), °C 640
1450
Melting Onset (Solidus), °C 610
1400
Specific Heat Capacity, J/kg-K 880
480
Thermal Conductivity, W/m-K 140 to 170
27
Thermal Expansion, µm/m-K 23
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35 to 43
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 110 to 130
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
7.5
Density, g/cm3 2.9
7.7
Embodied Carbon, kg CO2/kg material 8.3
2.0
Embodied Energy, MJ/kg 150
29
Embodied Water, L/kg 1150
97

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 32 to 57
70 to 130
Resilience: Unit (Modulus of Resilience), kJ/m3 65 to 850
240 to 1600
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 47
25
Strength to Weight: Axial, points 19 to 38
20 to 35
Strength to Weight: Bending, points 26 to 41
19 to 28
Thermal Diffusivity, mm2/s 54 to 65
7.3
Thermal Shock Resistance, points 8.7 to 18
20 to 35

Alloy Composition

Aluminum (Al), % 91 to 94.7
0
Carbon (C), % 0
0 to 0.18
Chromium (Cr), % 0.060 to 0.2
11 to 13
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0 to 0.4
84.5 to 89
Magnesium (Mg), % 1.0 to 1.8
0
Manganese (Mn), % 0.2 to 0.7
0 to 1.0
Niobium (Nb), % 0
0.050 to 0.3
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.35
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0.010 to 0.060
0
Zinc (Zn), % 4.0 to 5.0
0
Zirconium (Zr), % 0.080 to 0.2
0
Residuals, % 0 to 0.15
0

Comparable Variants