MakeItFrom.com
Menu (ESC)

7005 Aluminum vs. EN 2.4650 Nickel

7005 aluminum belongs to the aluminum alloys classification, while EN 2.4650 nickel belongs to the nickel alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7005 aluminum and the bottom bar is EN 2.4650 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
210
Elongation at Break, % 10 to 20
34
Fatigue Strength, MPa 100 to 190
480
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
80
Shear Strength, MPa 120 to 230
730
Tensile Strength: Ultimate (UTS), MPa 200 to 400
1090
Tensile Strength: Yield (Proof), MPa 95 to 350
650

Thermal Properties

Latent Heat of Fusion, J/g 380
320
Maximum Temperature: Mechanical, °C 200
1010
Melting Completion (Liquidus), °C 640
1400
Melting Onset (Solidus), °C 610
1350
Specific Heat Capacity, J/kg-K 880
450
Thermal Conductivity, W/m-K 140 to 170
12
Thermal Expansion, µm/m-K 23
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35 to 43
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 110 to 130
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
80
Density, g/cm3 2.9
8.5
Embodied Carbon, kg CO2/kg material 8.3
10
Embodied Energy, MJ/kg 150
140
Embodied Water, L/kg 1150
360

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 32 to 57
320
Resilience: Unit (Modulus of Resilience), kJ/m3 65 to 850
1030
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 47
23
Strength to Weight: Axial, points 19 to 38
36
Strength to Weight: Bending, points 26 to 41
28
Thermal Diffusivity, mm2/s 54 to 65
3.1
Thermal Shock Resistance, points 8.7 to 18
33

Alloy Composition

Aluminum (Al), % 91 to 94.7
0.3 to 0.6
Boron (B), % 0
0 to 0.0050
Carbon (C), % 0
0.040 to 0.080
Chromium (Cr), % 0.060 to 0.2
19 to 21
Cobalt (Co), % 0
19 to 21
Copper (Cu), % 0 to 0.1
0 to 0.2
Iron (Fe), % 0 to 0.4
0 to 0.7
Magnesium (Mg), % 1.0 to 1.8
0
Manganese (Mn), % 0.2 to 0.7
0 to 0.6
Molybdenum (Mo), % 0
5.6 to 6.1
Nickel (Ni), % 0
46.9 to 54.2
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0 to 0.35
0 to 0.4
Sulfur (S), % 0
0 to 0.0070
Titanium (Ti), % 0.010 to 0.060
1.9 to 2.4
Zinc (Zn), % 4.0 to 5.0
0
Zirconium (Zr), % 0.080 to 0.2
0
Residuals, % 0 to 0.15
0