MakeItFrom.com
Menu (ESC)

7005 Aluminum vs. EN 2.4654 Nickel

7005 aluminum belongs to the aluminum alloys classification, while EN 2.4654 nickel belongs to the nickel alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7005 aluminum and the bottom bar is EN 2.4654 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
200
Elongation at Break, % 10 to 20
17
Fatigue Strength, MPa 100 to 190
460
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
77
Shear Strength, MPa 120 to 230
770
Tensile Strength: Ultimate (UTS), MPa 200 to 400
1250
Tensile Strength: Yield (Proof), MPa 95 to 350
850

Thermal Properties

Latent Heat of Fusion, J/g 380
320
Maximum Temperature: Mechanical, °C 200
1000
Melting Completion (Liquidus), °C 640
1390
Melting Onset (Solidus), °C 610
1330
Specific Heat Capacity, J/kg-K 880
460
Thermal Conductivity, W/m-K 140 to 170
13
Thermal Expansion, µm/m-K 23
12

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
75
Density, g/cm3 2.9
8.4
Embodied Carbon, kg CO2/kg material 8.3
10
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1150
340

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 32 to 57
190
Resilience: Unit (Modulus of Resilience), kJ/m3 65 to 850
1810
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 47
23
Strength to Weight: Axial, points 19 to 38
42
Strength to Weight: Bending, points 26 to 41
31
Thermal Diffusivity, mm2/s 54 to 65
3.3
Thermal Shock Resistance, points 8.7 to 18
37

Alloy Composition

Aluminum (Al), % 91 to 94.7
1.2 to 1.6
Boron (B), % 0
0.0030 to 0.010
Carbon (C), % 0
0.020 to 0.1
Chromium (Cr), % 0.060 to 0.2
18 to 21
Cobalt (Co), % 0
12 to 15
Copper (Cu), % 0 to 0.1
0 to 0.1
Iron (Fe), % 0 to 0.4
0 to 2.0
Magnesium (Mg), % 1.0 to 1.8
0
Manganese (Mn), % 0.2 to 0.7
0 to 1.0
Molybdenum (Mo), % 0
3.5 to 5.0
Nickel (Ni), % 0
50.6 to 62.5
Phosphorus (P), % 0
0 to 0.015
Silicon (Si), % 0 to 0.35
0 to 0.15
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0.010 to 0.060
2.8 to 3.3
Zinc (Zn), % 4.0 to 5.0
0
Zirconium (Zr), % 0.080 to 0.2
0.020 to 0.080
Residuals, % 0 to 0.15
0