MakeItFrom.com
Menu (ESC)

7005 Aluminum vs. EN 2.4665 Nickel

7005 aluminum belongs to the aluminum alloys classification, while EN 2.4665 nickel belongs to the nickel alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7005 aluminum and the bottom bar is EN 2.4665 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
210
Elongation at Break, % 10 to 20
34
Fatigue Strength, MPa 100 to 190
220
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
81
Shear Strength, MPa 120 to 230
520
Tensile Strength: Ultimate (UTS), MPa 200 to 400
790
Tensile Strength: Yield (Proof), MPa 95 to 350
300

Thermal Properties

Latent Heat of Fusion, J/g 380
320
Maximum Temperature: Mechanical, °C 200
990
Melting Completion (Liquidus), °C 640
1460
Melting Onset (Solidus), °C 610
1410
Specific Heat Capacity, J/kg-K 880
450
Thermal Conductivity, W/m-K 140 to 170
12
Thermal Expansion, µm/m-K 23
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35 to 43
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 110 to 130
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
55
Density, g/cm3 2.9
8.4
Embodied Carbon, kg CO2/kg material 8.3
9.2
Embodied Energy, MJ/kg 150
130
Embodied Water, L/kg 1150
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 32 to 57
210
Resilience: Unit (Modulus of Resilience), kJ/m3 65 to 850
220
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 47
23
Strength to Weight: Axial, points 19 to 38
26
Strength to Weight: Bending, points 26 to 41
22
Thermal Diffusivity, mm2/s 54 to 65
3.2
Thermal Shock Resistance, points 8.7 to 18
20

Alloy Composition

Aluminum (Al), % 91 to 94.7
0 to 0.5
Boron (B), % 0
0 to 0.010
Carbon (C), % 0
0.050 to 0.15
Chromium (Cr), % 0.060 to 0.2
20.5 to 23
Cobalt (Co), % 0
0.5 to 2.5
Copper (Cu), % 0 to 0.1
0 to 0.5
Iron (Fe), % 0 to 0.4
17 to 20
Magnesium (Mg), % 1.0 to 1.8
0
Manganese (Mn), % 0.2 to 0.7
0 to 1.0
Molybdenum (Mo), % 0
8.0 to 10
Nickel (Ni), % 0
40.3 to 53.8
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0 to 0.35
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0.010 to 0.060
0
Tungsten (W), % 0
0.2 to 1.0
Zinc (Zn), % 4.0 to 5.0
0
Zirconium (Zr), % 0.080 to 0.2
0
Residuals, % 0 to 0.15
0