MakeItFrom.com
Menu (ESC)

7005 Aluminum vs. EN AC-43400 Aluminum

Both 7005 aluminum and EN AC-43400 aluminum are aluminum alloys. They have 90% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is 7005 aluminum and the bottom bar is EN AC-43400 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
72
Elongation at Break, % 10 to 20
1.1
Fatigue Strength, MPa 100 to 190
110
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
27
Tensile Strength: Ultimate (UTS), MPa 200 to 400
270
Tensile Strength: Yield (Proof), MPa 95 to 350
160

Thermal Properties

Latent Heat of Fusion, J/g 380
540
Maximum Temperature: Mechanical, °C 200
170
Melting Completion (Liquidus), °C 640
600
Melting Onset (Solidus), °C 610
590
Specific Heat Capacity, J/kg-K 880
900
Thermal Conductivity, W/m-K 140 to 170
140
Thermal Expansion, µm/m-K 23
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35 to 43
32
Electrical Conductivity: Equal Weight (Specific), % IACS 110 to 130
110

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.9
2.6
Embodied Carbon, kg CO2/kg material 8.3
7.8
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1150
1070

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 32 to 57
2.6
Resilience: Unit (Modulus of Resilience), kJ/m3 65 to 850
180
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 47
54
Strength to Weight: Axial, points 19 to 38
29
Strength to Weight: Bending, points 26 to 41
36
Thermal Diffusivity, mm2/s 54 to 65
59
Thermal Shock Resistance, points 8.7 to 18
12

Alloy Composition

Aluminum (Al), % 91 to 94.7
86 to 90.8
Chromium (Cr), % 0.060 to 0.2
0
Copper (Cu), % 0 to 0.1
0 to 0.1
Iron (Fe), % 0 to 0.4
0 to 1.0
Lead (Pb), % 0
0 to 0.15
Magnesium (Mg), % 1.0 to 1.8
0.2 to 0.5
Manganese (Mn), % 0.2 to 0.7
0 to 0.55
Nickel (Ni), % 0
0 to 0.15
Silicon (Si), % 0 to 0.35
9.0 to 11
Tin (Sn), % 0
0 to 0.050
Titanium (Ti), % 0.010 to 0.060
0 to 0.2
Zinc (Zn), % 4.0 to 5.0
0 to 0.15
Zirconium (Zr), % 0.080 to 0.2
0
Residuals, % 0
0 to 0.15