MakeItFrom.com
Menu (ESC)

7005 Aluminum vs. CC497K Bronze

7005 aluminum belongs to the aluminum alloys classification, while CC497K bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7005 aluminum and the bottom bar is CC497K bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
93
Elongation at Break, % 10 to 20
6.7
Poisson's Ratio 0.33
0.36
Shear Modulus, GPa 26
34
Tensile Strength: Ultimate (UTS), MPa 200 to 400
190
Tensile Strength: Yield (Proof), MPa 95 to 350
91

Thermal Properties

Latent Heat of Fusion, J/g 380
160
Maximum Temperature: Mechanical, °C 200
130
Melting Completion (Liquidus), °C 640
870
Melting Onset (Solidus), °C 610
800
Specific Heat Capacity, J/kg-K 880
330
Thermal Conductivity, W/m-K 140 to 170
53
Thermal Expansion, µm/m-K 23
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35 to 43
9.0
Electrical Conductivity: Equal Weight (Specific), % IACS 110 to 130
8.7

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
29
Density, g/cm3 2.9
9.3
Embodied Carbon, kg CO2/kg material 8.3
3.0
Embodied Energy, MJ/kg 150
48
Embodied Water, L/kg 1150
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 32 to 57
10
Resilience: Unit (Modulus of Resilience), kJ/m3 65 to 850
45
Stiffness to Weight: Axial, points 13
5.5
Stiffness to Weight: Bending, points 47
16
Strength to Weight: Axial, points 19 to 38
5.6
Strength to Weight: Bending, points 26 to 41
7.8
Thermal Diffusivity, mm2/s 54 to 65
17
Thermal Shock Resistance, points 8.7 to 18
7.2

Alloy Composition

Aluminum (Al), % 91 to 94.7
0 to 0.010
Antimony (Sb), % 0
0 to 0.75
Chromium (Cr), % 0.060 to 0.2
0
Copper (Cu), % 0 to 0.1
67.5 to 77.5
Iron (Fe), % 0 to 0.4
0 to 0.25
Lead (Pb), % 0
18 to 23
Magnesium (Mg), % 1.0 to 1.8
0
Manganese (Mn), % 0.2 to 0.7
0 to 0.2
Nickel (Ni), % 0
0.5 to 2.5
Phosphorus (P), % 0
0 to 0.1
Silicon (Si), % 0 to 0.35
0 to 0.010
Sulfur (S), % 0
0 to 0.1
Tin (Sn), % 0
4.0 to 6.0
Titanium (Ti), % 0.010 to 0.060
0
Zinc (Zn), % 4.0 to 5.0
0 to 2.0
Zirconium (Zr), % 0.080 to 0.2
0
Residuals, % 0 to 0.15
0