MakeItFrom.com
Menu (ESC)

7005 Aluminum vs. Grade M30C Nickel

7005 aluminum belongs to the aluminum alloys classification, while grade M30C nickel belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7005 aluminum and the bottom bar is grade M30C nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
160
Elongation at Break, % 10 to 20
29
Fatigue Strength, MPa 100 to 190
170
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 26
61
Tensile Strength: Ultimate (UTS), MPa 200 to 400
510
Tensile Strength: Yield (Proof), MPa 95 to 350
250

Thermal Properties

Latent Heat of Fusion, J/g 380
290
Maximum Temperature: Mechanical, °C 200
900
Melting Completion (Liquidus), °C 640
1290
Melting Onset (Solidus), °C 610
1240
Specific Heat Capacity, J/kg-K 880
430
Thermal Conductivity, W/m-K 140 to 170
22
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35 to 43
3.3
Electrical Conductivity: Equal Weight (Specific), % IACS 110 to 130
3.4

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
60
Density, g/cm3 2.9
8.8
Embodied Carbon, kg CO2/kg material 8.3
9.5
Embodied Energy, MJ/kg 150
140
Embodied Water, L/kg 1150
250

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 32 to 57
120
Resilience: Unit (Modulus of Resilience), kJ/m3 65 to 850
200
Stiffness to Weight: Axial, points 13
10
Stiffness to Weight: Bending, points 47
21
Strength to Weight: Axial, points 19 to 38
16
Strength to Weight: Bending, points 26 to 41
16
Thermal Diffusivity, mm2/s 54 to 65
5.7
Thermal Shock Resistance, points 8.7 to 18
18

Alloy Composition

Aluminum (Al), % 91 to 94.7
0
Carbon (C), % 0
0 to 0.3
Chromium (Cr), % 0.060 to 0.2
0
Copper (Cu), % 0 to 0.1
26 to 33
Iron (Fe), % 0 to 0.4
0 to 3.5
Magnesium (Mg), % 1.0 to 1.8
0
Manganese (Mn), % 0.2 to 0.7
0 to 1.5
Nickel (Ni), % 0
56.6 to 72
Niobium (Nb), % 0
1.0 to 3.0
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.35
1.0 to 2.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0.010 to 0.060
0
Zinc (Zn), % 4.0 to 5.0
0
Zirconium (Zr), % 0.080 to 0.2
0
Residuals, % 0 to 0.15
0