MakeItFrom.com
Menu (ESC)

7005 Aluminum vs. SAE-AISI 1020 Steel

7005 aluminum belongs to the aluminum alloys classification, while SAE-AISI 1020 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7005 aluminum and the bottom bar is SAE-AISI 1020 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
190
Elongation at Break, % 10 to 20
17 to 28
Fatigue Strength, MPa 100 to 190
180 to 250
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
73
Shear Strength, MPa 120 to 230
280
Tensile Strength: Ultimate (UTS), MPa 200 to 400
430 to 460
Tensile Strength: Yield (Proof), MPa 95 to 350
240 to 380

Thermal Properties

Latent Heat of Fusion, J/g 380
250
Maximum Temperature: Mechanical, °C 200
400
Melting Completion (Liquidus), °C 640
1460
Melting Onset (Solidus), °C 610
1420
Specific Heat Capacity, J/kg-K 880
470
Thermal Conductivity, W/m-K 140 to 170
52
Thermal Expansion, µm/m-K 23
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35 to 43
11
Electrical Conductivity: Equal Weight (Specific), % IACS 110 to 130
12

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
1.8
Density, g/cm3 2.9
7.9
Embodied Carbon, kg CO2/kg material 8.3
1.4
Embodied Energy, MJ/kg 150
18
Embodied Water, L/kg 1150
45

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 32 to 57
72 to 100
Resilience: Unit (Modulus of Resilience), kJ/m3 65 to 850
150 to 380
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 47
24
Strength to Weight: Axial, points 19 to 38
15 to 16
Strength to Weight: Bending, points 26 to 41
16 to 17
Thermal Diffusivity, mm2/s 54 to 65
14
Thermal Shock Resistance, points 8.7 to 18
13 to 14

Alloy Composition

Aluminum (Al), % 91 to 94.7
0
Carbon (C), % 0
0.18 to 0.23
Chromium (Cr), % 0.060 to 0.2
0
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0 to 0.4
99.08 to 99.52
Magnesium (Mg), % 1.0 to 1.8
0
Manganese (Mn), % 0.2 to 0.7
0.3 to 0.6
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.35
0
Sulfur (S), % 0
0 to 0.050
Titanium (Ti), % 0.010 to 0.060
0
Zinc (Zn), % 4.0 to 5.0
0
Zirconium (Zr), % 0.080 to 0.2
0
Residuals, % 0 to 0.15
0