MakeItFrom.com
Menu (ESC)

7005 Aluminum vs. C71000 Copper-nickel

7005 aluminum belongs to the aluminum alloys classification, while C71000 copper-nickel belongs to the copper alloys. There are 24 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7005 aluminum and the bottom bar is C71000 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
130
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
49
Tensile Strength: Ultimate (UTS), MPa 200 to 400
320 to 560

Thermal Properties

Latent Heat of Fusion, J/g 380
230
Maximum Temperature: Mechanical, °C 200
240
Melting Completion (Liquidus), °C 640
1200
Melting Onset (Solidus), °C 610
1150
Specific Heat Capacity, J/kg-K 880
400
Thermal Conductivity, W/m-K 140 to 170
43
Thermal Expansion, µm/m-K 23
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35 to 43
6.5
Electrical Conductivity: Equal Weight (Specific), % IACS 110 to 130
6.6

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
37
Density, g/cm3 2.9
8.9
Embodied Carbon, kg CO2/kg material 8.3
4.3
Embodied Energy, MJ/kg 150
63
Embodied Water, L/kg 1150
290

Common Calculations

Stiffness to Weight: Axial, points 13
8.2
Stiffness to Weight: Bending, points 47
19
Strength to Weight: Axial, points 19 to 38
10 to 18
Strength to Weight: Bending, points 26 to 41
12 to 17
Thermal Diffusivity, mm2/s 54 to 65
12
Thermal Shock Resistance, points 8.7 to 18
12 to 20

Alloy Composition

Aluminum (Al), % 91 to 94.7
0
Chromium (Cr), % 0.060 to 0.2
0
Copper (Cu), % 0 to 0.1
73.5 to 80.5
Iron (Fe), % 0 to 0.4
0.5 to 1.0
Lead (Pb), % 0
0 to 0.050
Magnesium (Mg), % 1.0 to 1.8
0
Manganese (Mn), % 0.2 to 0.7
0 to 1.0
Nickel (Ni), % 0
19 to 23
Silicon (Si), % 0 to 0.35
0
Titanium (Ti), % 0.010 to 0.060
0
Zinc (Zn), % 4.0 to 5.0
0 to 1.0
Zirconium (Zr), % 0.080 to 0.2
0
Residuals, % 0
0 to 0.5