MakeItFrom.com
Menu (ESC)

7005 Aluminum vs. C72800 Copper-nickel

7005 aluminum belongs to the aluminum alloys classification, while C72800 copper-nickel belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7005 aluminum and the bottom bar is C72800 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
120
Elongation at Break, % 10 to 20
3.9 to 23
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 26
44
Shear Strength, MPa 120 to 230
330 to 740
Tensile Strength: Ultimate (UTS), MPa 200 to 400
520 to 1270
Tensile Strength: Yield (Proof), MPa 95 to 350
250 to 1210

Thermal Properties

Latent Heat of Fusion, J/g 380
210
Maximum Temperature: Mechanical, °C 200
200
Melting Completion (Liquidus), °C 640
1080
Melting Onset (Solidus), °C 610
920
Specific Heat Capacity, J/kg-K 880
380
Thermal Conductivity, W/m-K 140 to 170
55
Thermal Expansion, µm/m-K 23
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35 to 43
11
Electrical Conductivity: Equal Weight (Specific), % IACS 110 to 130
11

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
38
Density, g/cm3 2.9
8.8
Embodied Carbon, kg CO2/kg material 8.3
4.4
Embodied Energy, MJ/kg 150
68
Embodied Water, L/kg 1150
360

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 32 to 57
37 to 99
Resilience: Unit (Modulus of Resilience), kJ/m3 65 to 850
260 to 5650
Stiffness to Weight: Axial, points 13
7.4
Stiffness to Weight: Bending, points 47
19
Strength to Weight: Axial, points 19 to 38
17 to 40
Strength to Weight: Bending, points 26 to 41
16 to 30
Thermal Diffusivity, mm2/s 54 to 65
17
Thermal Shock Resistance, points 8.7 to 18
19 to 45

Alloy Composition

Aluminum (Al), % 91 to 94.7
0 to 0.1
Antimony (Sb), % 0
0 to 0.020
Bismuth (Bi), % 0
0 to 0.0010
Boron (B), % 0
0 to 0.0010
Chromium (Cr), % 0.060 to 0.2
0
Copper (Cu), % 0 to 0.1
78.3 to 82.8
Iron (Fe), % 0 to 0.4
0 to 0.5
Lead (Pb), % 0
0 to 0.0050
Magnesium (Mg), % 1.0 to 1.8
0.0050 to 0.15
Manganese (Mn), % 0.2 to 0.7
0.050 to 0.3
Nickel (Ni), % 0
9.5 to 10.5
Niobium (Nb), % 0
0.1 to 0.3
Phosphorus (P), % 0
0 to 0.0050
Silicon (Si), % 0 to 0.35
0 to 0.050
Sulfur (S), % 0
0 to 0.0025
Tin (Sn), % 0
7.5 to 8.5
Titanium (Ti), % 0.010 to 0.060
0 to 0.010
Zinc (Zn), % 4.0 to 5.0
0 to 1.0
Zirconium (Zr), % 0.080 to 0.2
0
Residuals, % 0
0 to 0.3