MakeItFrom.com
Menu (ESC)

7005 Aluminum vs. N06975 Nickel

7005 aluminum belongs to the aluminum alloys classification, while N06975 nickel belongs to the nickel alloys. There are 26 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7005 aluminum and the bottom bar is N06975 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
200
Elongation at Break, % 10 to 20
45
Fatigue Strength, MPa 100 to 190
210
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
80
Shear Strength, MPa 120 to 230
470
Tensile Strength: Ultimate (UTS), MPa 200 to 400
660
Tensile Strength: Yield (Proof), MPa 95 to 350
250

Thermal Properties

Latent Heat of Fusion, J/g 380
320
Maximum Temperature: Mechanical, °C 200
1000
Melting Completion (Liquidus), °C 640
1430
Melting Onset (Solidus), °C 610
1380
Specific Heat Capacity, J/kg-K 880
460
Thermal Expansion, µm/m-K 23
13

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
50
Density, g/cm3 2.9
8.3
Embodied Carbon, kg CO2/kg material 8.3
8.9
Embodied Energy, MJ/kg 150
120
Embodied Water, L/kg 1150
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 32 to 57
240
Resilience: Unit (Modulus of Resilience), kJ/m3 65 to 850
150
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 47
24
Strength to Weight: Axial, points 19 to 38
22
Strength to Weight: Bending, points 26 to 41
20
Thermal Shock Resistance, points 8.7 to 18
18

Alloy Composition

Aluminum (Al), % 91 to 94.7
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0.060 to 0.2
23 to 26
Copper (Cu), % 0 to 0.1
0.7 to 1.2
Iron (Fe), % 0 to 0.4
10.2 to 23.6
Magnesium (Mg), % 1.0 to 1.8
0
Manganese (Mn), % 0.2 to 0.7
0 to 1.0
Molybdenum (Mo), % 0
5.0 to 7.0
Nickel (Ni), % 0
47 to 52
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.35
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0.010 to 0.060
0.7 to 1.5
Zinc (Zn), % 4.0 to 5.0
0
Zirconium (Zr), % 0.080 to 0.2
0
Residuals, % 0 to 0.15
0