MakeItFrom.com
Menu (ESC)

7005 Aluminum vs. S35135 Stainless Steel

7005 aluminum belongs to the aluminum alloys classification, while S35135 stainless steel belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7005 aluminum and the bottom bar is S35135 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
200
Elongation at Break, % 10 to 20
34
Fatigue Strength, MPa 100 to 190
180
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
79
Shear Strength, MPa 120 to 230
390
Tensile Strength: Ultimate (UTS), MPa 200 to 400
590
Tensile Strength: Yield (Proof), MPa 95 to 350
230

Thermal Properties

Latent Heat of Fusion, J/g 380
320
Maximum Temperature: Mechanical, °C 200
1100
Melting Completion (Liquidus), °C 640
1430
Melting Onset (Solidus), °C 610
1380
Specific Heat Capacity, J/kg-K 880
470
Thermal Expansion, µm/m-K 23
16

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
37
Density, g/cm3 2.9
8.1
Embodied Carbon, kg CO2/kg material 8.3
6.8
Embodied Energy, MJ/kg 150
94
Embodied Water, L/kg 1150
220

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 32 to 57
160
Resilience: Unit (Modulus of Resilience), kJ/m3 65 to 850
130
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 47
24
Strength to Weight: Axial, points 19 to 38
20
Strength to Weight: Bending, points 26 to 41
19
Thermal Shock Resistance, points 8.7 to 18
13

Alloy Composition

Aluminum (Al), % 91 to 94.7
0
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0.060 to 0.2
20 to 25
Copper (Cu), % 0 to 0.1
0 to 0.75
Iron (Fe), % 0 to 0.4
28.3 to 45
Magnesium (Mg), % 1.0 to 1.8
0
Manganese (Mn), % 0.2 to 0.7
0 to 1.0
Molybdenum (Mo), % 0
4.0 to 4.8
Nickel (Ni), % 0
30 to 38
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0 to 0.35
0.6 to 1.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0.010 to 0.060
0.4 to 1.0
Zinc (Zn), % 4.0 to 5.0
0
Zirconium (Zr), % 0.080 to 0.2
0
Residuals, % 0 to 0.15
0