MakeItFrom.com
Menu (ESC)

7005 Aluminum vs. WE54A Magnesium

7005 aluminum belongs to the aluminum alloys classification, while WE54A magnesium belongs to the magnesium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is 7005 aluminum and the bottom bar is WE54A magnesium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
44
Elongation at Break, % 10 to 20
4.3 to 5.6
Fatigue Strength, MPa 100 to 190
98 to 130
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
17
Shear Strength, MPa 120 to 230
150 to 170
Tensile Strength: Ultimate (UTS), MPa 200 to 400
270 to 300
Tensile Strength: Yield (Proof), MPa 95 to 350
180

Thermal Properties

Latent Heat of Fusion, J/g 380
330
Maximum Temperature: Mechanical, °C 200
170
Melting Completion (Liquidus), °C 640
640
Melting Onset (Solidus), °C 610
570
Specific Heat Capacity, J/kg-K 880
960
Thermal Conductivity, W/m-K 140 to 170
52
Thermal Expansion, µm/m-K 23
25

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35 to 43
10
Electrical Conductivity: Equal Weight (Specific), % IACS 110 to 130
47

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
34
Density, g/cm3 2.9
1.9
Embodied Carbon, kg CO2/kg material 8.3
29
Embodied Energy, MJ/kg 150
260
Embodied Water, L/kg 1150
900

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 32 to 57
10 to 14
Resilience: Unit (Modulus of Resilience), kJ/m3 65 to 850
360 to 380
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 47
62
Strength to Weight: Axial, points 19 to 38
39 to 43
Strength to Weight: Bending, points 26 to 41
49 to 51
Thermal Diffusivity, mm2/s 54 to 65
28
Thermal Shock Resistance, points 8.7 to 18
18 to 19

Alloy Composition

Aluminum (Al), % 91 to 94.7
0
Chromium (Cr), % 0.060 to 0.2
0
Copper (Cu), % 0 to 0.1
0 to 0.030
Iron (Fe), % 0 to 0.4
0 to 0.010
Lithium (Li), % 0
0 to 0.2
Magnesium (Mg), % 1.0 to 1.8
88.7 to 93.4
Manganese (Mn), % 0.2 to 0.7
0 to 0.030
Nickel (Ni), % 0
0 to 0.0050
Silicon (Si), % 0 to 0.35
0 to 0.010
Titanium (Ti), % 0.010 to 0.060
0
Unspecified Rare Earths, % 0
1.5 to 4.0
Yttrium (Y), % 0
4.8 to 5.5
Zinc (Zn), % 4.0 to 5.0
0 to 0.2
Zirconium (Zr), % 0.080 to 0.2
0.4 to 1.0
Residuals, % 0
0 to 0.3

Comparable Variants