MakeItFrom.com
Menu (ESC)

7010 Aluminum vs. 443.0 Aluminum

Both 7010 aluminum and 443.0 aluminum are aluminum alloys. They have a moderately high 90% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 7010 aluminum and the bottom bar is 443.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
71
Elongation at Break, % 3.9 to 6.8
5.6
Fatigue Strength, MPa 160 to 190
55
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 26
27
Shear Strength, MPa 300 to 340
96
Tensile Strength: Ultimate (UTS), MPa 520 to 590
150
Tensile Strength: Yield (Proof), MPa 410 to 540
65

Thermal Properties

Latent Heat of Fusion, J/g 380
470
Maximum Temperature: Mechanical, °C 200
180
Melting Completion (Liquidus), °C 630
630
Melting Onset (Solidus), °C 480
580
Specific Heat Capacity, J/kg-K 860
900
Thermal Conductivity, W/m-K 150
150
Thermal Expansion, µm/m-K 24
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
38
Electrical Conductivity: Equal Weight (Specific), % IACS 120
130

Otherwise Unclassified Properties

Base Metal Price, % relative 10
9.5
Density, g/cm3 3.0
2.7
Embodied Carbon, kg CO2/kg material 8.3
8.0
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1120
1120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 22 to 33
6.9
Resilience: Unit (Modulus of Resilience), kJ/m3 1230 to 2130
30
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 45
52
Strength to Weight: Axial, points 47 to 54
16
Strength to Weight: Bending, points 47 to 52
23
Thermal Diffusivity, mm2/s 58
61
Thermal Shock Resistance, points 22 to 26
6.9

Alloy Composition

Aluminum (Al), % 87.9 to 90.6
90.7 to 95.5
Chromium (Cr), % 0 to 0.050
0 to 0.25
Copper (Cu), % 1.5 to 2.0
0 to 0.6
Iron (Fe), % 0 to 0.15
0 to 0.8
Magnesium (Mg), % 2.1 to 2.6
0 to 0.050
Manganese (Mn), % 0 to 0.1
0 to 0.5
Nickel (Ni), % 0 to 0.050
0
Silicon (Si), % 0 to 0.12
4.5 to 6.0
Titanium (Ti), % 0 to 0.060
0 to 0.25
Zinc (Zn), % 5.7 to 6.7
0 to 0.5
Zirconium (Zr), % 0.1 to 0.16
0
Residuals, % 0
0 to 0.35