MakeItFrom.com
Menu (ESC)

7010 Aluminum vs. AISI 304Cu Stainless Steel

7010 aluminum belongs to the aluminum alloys classification, while AISI 304Cu stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7010 aluminum and the bottom bar is AISI 304Cu stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
190
Elongation at Break, % 3.9 to 6.8
45
Fatigue Strength, MPa 160 to 190
190
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 26
76
Shear Strength, MPa 300 to 340
370
Tensile Strength: Ultimate (UTS), MPa 520 to 590
530
Tensile Strength: Yield (Proof), MPa 410 to 540
210

Thermal Properties

Latent Heat of Fusion, J/g 380
290
Maximum Temperature: Mechanical, °C 200
930
Melting Completion (Liquidus), °C 630
1410
Melting Onset (Solidus), °C 480
1370
Specific Heat Capacity, J/kg-K 860
480
Thermal Conductivity, W/m-K 150
13
Thermal Expansion, µm/m-K 24
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 120
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 10
16
Density, g/cm3 3.0
7.8
Embodied Carbon, kg CO2/kg material 8.3
3.0
Embodied Energy, MJ/kg 150
43
Embodied Water, L/kg 1120
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 22 to 33
190
Resilience: Unit (Modulus of Resilience), kJ/m3 1230 to 2130
110
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 45
25
Strength to Weight: Axial, points 47 to 54
19
Strength to Weight: Bending, points 47 to 52
19
Thermal Diffusivity, mm2/s 58
3.5
Thermal Shock Resistance, points 22 to 26
12

Alloy Composition

Aluminum (Al), % 87.9 to 90.6
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0 to 0.050
17 to 19
Copper (Cu), % 1.5 to 2.0
3.0 to 4.0
Iron (Fe), % 0 to 0.15
63.9 to 72
Magnesium (Mg), % 2.1 to 2.6
0
Manganese (Mn), % 0 to 0.1
0 to 2.0
Nickel (Ni), % 0 to 0.050
8.0 to 10
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0 to 0.12
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.060
0
Zinc (Zn), % 5.7 to 6.7
0
Zirconium (Zr), % 0.1 to 0.16
0
Residuals, % 0 to 0.15
0