MakeItFrom.com
Menu (ESC)

7010 Aluminum vs. AISI 440C Stainless Steel

7010 aluminum belongs to the aluminum alloys classification, while AISI 440C stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7010 aluminum and the bottom bar is AISI 440C stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
200
Elongation at Break, % 3.9 to 6.8
2.0 to 14
Fatigue Strength, MPa 160 to 190
260 to 840
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 26
76
Shear Strength, MPa 300 to 340
430 to 1120
Tensile Strength: Ultimate (UTS), MPa 520 to 590
710 to 1970
Tensile Strength: Yield (Proof), MPa 410 to 540
450 to 1900

Thermal Properties

Latent Heat of Fusion, J/g 380
280
Maximum Temperature: Mechanical, °C 200
870
Melting Completion (Liquidus), °C 630
1480
Melting Onset (Solidus), °C 480
1370
Specific Heat Capacity, J/kg-K 860
480
Thermal Conductivity, W/m-K 150
22
Thermal Expansion, µm/m-K 24
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 120
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 10
9.0
Density, g/cm3 3.0
7.7
Embodied Carbon, kg CO2/kg material 8.3
2.2
Embodied Energy, MJ/kg 150
31
Embodied Water, L/kg 1120
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 22 to 33
39 to 88
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 45
25
Strength to Weight: Axial, points 47 to 54
26 to 71
Strength to Weight: Bending, points 47 to 52
23 to 46
Thermal Diffusivity, mm2/s 58
6.0
Thermal Shock Resistance, points 22 to 26
26 to 71

Alloy Composition

Aluminum (Al), % 87.9 to 90.6
0
Carbon (C), % 0
1.0 to 1.2
Chromium (Cr), % 0 to 0.050
16 to 18
Copper (Cu), % 1.5 to 2.0
0
Iron (Fe), % 0 to 0.15
78 to 83.1
Magnesium (Mg), % 2.1 to 2.6
0
Manganese (Mn), % 0 to 0.1
0 to 1.0
Molybdenum (Mo), % 0
0 to 0.75
Nickel (Ni), % 0 to 0.050
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.12
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.060
0
Zinc (Zn), % 5.7 to 6.7
0
Zirconium (Zr), % 0.1 to 0.16
0
Residuals, % 0 to 0.15
0