MakeItFrom.com
Menu (ESC)

7010 Aluminum vs. AISI 445 Stainless Steel

7010 aluminum belongs to the aluminum alloys classification, while AISI 445 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7010 aluminum and the bottom bar is AISI 445 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
200
Elongation at Break, % 3.9 to 6.8
25
Fatigue Strength, MPa 160 to 190
160
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 26
78
Shear Strength, MPa 300 to 340
310
Tensile Strength: Ultimate (UTS), MPa 520 to 590
480
Tensile Strength: Yield (Proof), MPa 410 to 540
230

Thermal Properties

Latent Heat of Fusion, J/g 380
290
Maximum Temperature: Mechanical, °C 200
950
Melting Completion (Liquidus), °C 630
1440
Melting Onset (Solidus), °C 480
1390
Specific Heat Capacity, J/kg-K 860
480
Thermal Conductivity, W/m-K 150
21
Thermal Expansion, µm/m-K 24
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
2.6
Electrical Conductivity: Equal Weight (Specific), % IACS 120
3.0

Otherwise Unclassified Properties

Base Metal Price, % relative 10
12
Density, g/cm3 3.0
7.7
Embodied Carbon, kg CO2/kg material 8.3
2.6
Embodied Energy, MJ/kg 150
38
Embodied Water, L/kg 1120
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 22 to 33
98
Resilience: Unit (Modulus of Resilience), kJ/m3 1230 to 2130
140
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 45
25
Strength to Weight: Axial, points 47 to 54
17
Strength to Weight: Bending, points 47 to 52
18
Thermal Diffusivity, mm2/s 58
5.6
Thermal Shock Resistance, points 22 to 26
16

Alloy Composition

Aluminum (Al), % 87.9 to 90.6
0
Carbon (C), % 0
0 to 0.020
Chromium (Cr), % 0 to 0.050
19 to 21
Copper (Cu), % 1.5 to 2.0
0.3 to 0.6
Iron (Fe), % 0 to 0.15
74.9 to 80.7
Magnesium (Mg), % 2.1 to 2.6
0
Manganese (Mn), % 0 to 0.1
0 to 1.0
Nickel (Ni), % 0 to 0.050
0 to 0.6
Niobium (Nb), % 0
0 to 0.8
Nitrogen (N), % 0
0 to 0.030
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.12
0 to 1.0
Sulfur (S), % 0
0 to 0.012
Titanium (Ti), % 0 to 0.060
0
Zinc (Zn), % 5.7 to 6.7
0
Zirconium (Zr), % 0.1 to 0.16
0
Residuals, % 0 to 0.15
0