MakeItFrom.com
Menu (ESC)

7010 Aluminum vs. EN 1.4477 Stainless Steel

7010 aluminum belongs to the aluminum alloys classification, while EN 1.4477 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7010 aluminum and the bottom bar is EN 1.4477 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
210
Elongation at Break, % 3.9 to 6.8
22 to 23
Fatigue Strength, MPa 160 to 190
420 to 490
Poisson's Ratio 0.32
0.27
Shear Modulus, GPa 26
81
Shear Strength, MPa 300 to 340
550 to 580
Tensile Strength: Ultimate (UTS), MPa 520 to 590
880 to 930
Tensile Strength: Yield (Proof), MPa 410 to 540
620 to 730

Thermal Properties

Latent Heat of Fusion, J/g 380
300
Maximum Temperature: Mechanical, °C 200
1100
Melting Completion (Liquidus), °C 630
1430
Melting Onset (Solidus), °C 480
1380
Specific Heat Capacity, J/kg-K 860
480
Thermal Conductivity, W/m-K 150
13
Thermal Expansion, µm/m-K 24
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 120
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 10
20
Density, g/cm3 3.0
7.7
Embodied Carbon, kg CO2/kg material 8.3
3.7
Embodied Energy, MJ/kg 150
52
Embodied Water, L/kg 1120
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 22 to 33
180 to 190
Resilience: Unit (Modulus of Resilience), kJ/m3 1230 to 2130
940 to 1290
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 45
25
Strength to Weight: Axial, points 47 to 54
31 to 33
Strength to Weight: Bending, points 47 to 52
26 to 27
Thermal Diffusivity, mm2/s 58
3.5
Thermal Shock Resistance, points 22 to 26
23 to 25

Alloy Composition

Aluminum (Al), % 87.9 to 90.6
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0 to 0.050
28 to 30
Copper (Cu), % 1.5 to 2.0
0 to 0.8
Iron (Fe), % 0 to 0.15
56.6 to 63.6
Magnesium (Mg), % 2.1 to 2.6
0
Manganese (Mn), % 0 to 0.1
0.8 to 1.5
Molybdenum (Mo), % 0
1.5 to 2.6
Nickel (Ni), % 0 to 0.050
5.8 to 7.5
Nitrogen (N), % 0
0.3 to 0.4
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.12
0 to 0.5
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.060
0
Zinc (Zn), % 5.7 to 6.7
0
Zirconium (Zr), % 0.1 to 0.16
0
Residuals, % 0 to 0.15
0