MakeItFrom.com
Menu (ESC)

7010 Aluminum vs. EN 1.4807 Stainless Steel

7010 aluminum belongs to the aluminum alloys classification, while EN 1.4807 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7010 aluminum and the bottom bar is EN 1.4807 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
190
Elongation at Break, % 3.9 to 6.8
4.5
Fatigue Strength, MPa 160 to 190
120
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 26
75
Tensile Strength: Ultimate (UTS), MPa 520 to 590
480
Tensile Strength: Yield (Proof), MPa 410 to 540
250

Thermal Properties

Latent Heat of Fusion, J/g 380
320
Maximum Temperature: Mechanical, °C 200
1000
Melting Completion (Liquidus), °C 630
1390
Melting Onset (Solidus), °C 480
1350
Specific Heat Capacity, J/kg-K 860
480
Thermal Conductivity, W/m-K 150
12
Thermal Expansion, µm/m-K 24
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 120
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 10
39
Density, g/cm3 3.0
8.0
Embodied Carbon, kg CO2/kg material 8.3
6.8
Embodied Energy, MJ/kg 150
97
Embodied Water, L/kg 1120
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 22 to 33
18
Resilience: Unit (Modulus of Resilience), kJ/m3 1230 to 2130
160
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 45
24
Strength to Weight: Axial, points 47 to 54
17
Strength to Weight: Bending, points 47 to 52
17
Thermal Diffusivity, mm2/s 58
3.2
Thermal Shock Resistance, points 22 to 26
12

Alloy Composition

Aluminum (Al), % 87.9 to 90.6
0
Carbon (C), % 0
0.3 to 0.5
Chromium (Cr), % 0 to 0.050
17 to 20
Copper (Cu), % 1.5 to 2.0
0
Iron (Fe), % 0 to 0.15
36.6 to 46.7
Magnesium (Mg), % 2.1 to 2.6
0
Manganese (Mn), % 0 to 0.1
0 to 2.0
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0 to 0.050
34 to 36
Niobium (Nb), % 0
1.0 to 1.8
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.12
1.0 to 2.5
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.060
0
Zinc (Zn), % 5.7 to 6.7
0
Zirconium (Zr), % 0.1 to 0.16
0
Residuals, % 0 to 0.15
0