MakeItFrom.com
Menu (ESC)

7010 Aluminum vs. EN 1.6368 Steel

7010 aluminum belongs to the aluminum alloys classification, while EN 1.6368 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7010 aluminum and the bottom bar is EN 1.6368 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
190
Elongation at Break, % 3.9 to 6.8
18
Fatigue Strength, MPa 160 to 190
310 to 330
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 26
73
Shear Strength, MPa 300 to 340
410 to 430
Tensile Strength: Ultimate (UTS), MPa 520 to 590
660 to 690
Tensile Strength: Yield (Proof), MPa 410 to 540
460 to 490

Thermal Properties

Latent Heat of Fusion, J/g 380
250
Maximum Temperature: Mechanical, °C 200
410
Melting Completion (Liquidus), °C 630
1460
Melting Onset (Solidus), °C 480
1420
Specific Heat Capacity, J/kg-K 860
470
Thermal Conductivity, W/m-K 150
40
Thermal Expansion, µm/m-K 24
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 120
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 10
3.4
Density, g/cm3 3.0
7.9
Embodied Carbon, kg CO2/kg material 8.3
1.7
Embodied Energy, MJ/kg 150
22
Embodied Water, L/kg 1120
53

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 22 to 33
110
Resilience: Unit (Modulus of Resilience), kJ/m3 1230 to 2130
580 to 650
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 45
24
Strength to Weight: Axial, points 47 to 54
23 to 24
Strength to Weight: Bending, points 47 to 52
21 to 22
Thermal Diffusivity, mm2/s 58
11
Thermal Shock Resistance, points 22 to 26
20

Alloy Composition

Aluminum (Al), % 87.9 to 90.6
0.015 to 0.040
Carbon (C), % 0
0 to 0.17
Chromium (Cr), % 0 to 0.050
0 to 0.3
Copper (Cu), % 1.5 to 2.0
0.5 to 0.8
Iron (Fe), % 0 to 0.15
95.1 to 97.2
Magnesium (Mg), % 2.1 to 2.6
0
Manganese (Mn), % 0 to 0.1
0.8 to 1.2
Molybdenum (Mo), % 0
0.25 to 0.5
Nickel (Ni), % 0 to 0.050
1.0 to 1.3
Niobium (Nb), % 0
0.015 to 0.045
Nitrogen (N), % 0
0 to 0.020
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.12
0.25 to 0.5
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0 to 0.060
0
Zinc (Zn), % 5.7 to 6.7
0
Zirconium (Zr), % 0.1 to 0.16
0
Residuals, % 0 to 0.15
0