MakeItFrom.com
Menu (ESC)

7010 Aluminum vs. EN 1.7335 Steel

7010 aluminum belongs to the aluminum alloys classification, while EN 1.7335 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7010 aluminum and the bottom bar is EN 1.7335 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
190
Elongation at Break, % 3.9 to 6.8
21 to 22
Fatigue Strength, MPa 160 to 190
200 to 220
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 26
73
Shear Strength, MPa 300 to 340
310 to 330
Tensile Strength: Ultimate (UTS), MPa 520 to 590
500 to 520
Tensile Strength: Yield (Proof), MPa 410 to 540
280 to 310

Thermal Properties

Latent Heat of Fusion, J/g 380
250
Maximum Temperature: Mechanical, °C 200
430
Melting Completion (Liquidus), °C 630
1470
Melting Onset (Solidus), °C 480
1420
Specific Heat Capacity, J/kg-K 860
470
Thermal Conductivity, W/m-K 150
44
Thermal Expansion, µm/m-K 24
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 120
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 10
2.8
Density, g/cm3 3.0
7.9
Embodied Carbon, kg CO2/kg material 8.3
1.6
Embodied Energy, MJ/kg 150
21
Embodied Water, L/kg 1120
52

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 22 to 33
91 to 97
Resilience: Unit (Modulus of Resilience), kJ/m3 1230 to 2130
210 to 260
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 45
24
Strength to Weight: Axial, points 47 to 54
18
Strength to Weight: Bending, points 47 to 52
18
Thermal Diffusivity, mm2/s 58
12
Thermal Shock Resistance, points 22 to 26
15

Alloy Composition

Aluminum (Al), % 87.9 to 90.6
0
Carbon (C), % 0
0.080 to 0.18
Chromium (Cr), % 0 to 0.050
0.7 to 1.2
Copper (Cu), % 1.5 to 2.0
0 to 0.3
Iron (Fe), % 0 to 0.15
96.4 to 98.4
Magnesium (Mg), % 2.1 to 2.6
0
Manganese (Mn), % 0 to 0.1
0.4 to 1.0
Molybdenum (Mo), % 0
0.4 to 0.6
Nickel (Ni), % 0 to 0.050
0
Nitrogen (N), % 0
0 to 0.012
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.12
0 to 0.35
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0 to 0.060
0
Zinc (Zn), % 5.7 to 6.7
0
Zirconium (Zr), % 0.1 to 0.16
0
Residuals, % 0 to 0.15
0