MakeItFrom.com
Menu (ESC)

7010 Aluminum vs. EN 1.8838 Steel

7010 aluminum belongs to the aluminum alloys classification, while EN 1.8838 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7010 aluminum and the bottom bar is EN 1.8838 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
190
Elongation at Break, % 3.9 to 6.8
19
Fatigue Strength, MPa 160 to 190
290
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 26
73
Shear Strength, MPa 300 to 340
380
Tensile Strength: Ultimate (UTS), MPa 520 to 590
610
Tensile Strength: Yield (Proof), MPa 410 to 540
430

Thermal Properties

Latent Heat of Fusion, J/g 380
250
Maximum Temperature: Mechanical, °C 200
410
Melting Completion (Liquidus), °C 630
1460
Melting Onset (Solidus), °C 480
1420
Specific Heat Capacity, J/kg-K 860
470
Thermal Conductivity, W/m-K 150
44
Thermal Expansion, µm/m-K 24
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
7.6
Electrical Conductivity: Equal Weight (Specific), % IACS 120
8.7

Otherwise Unclassified Properties

Base Metal Price, % relative 10
2.6
Density, g/cm3 3.0
7.8
Embodied Carbon, kg CO2/kg material 8.3
1.7
Embodied Energy, MJ/kg 150
23
Embodied Water, L/kg 1120
50

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 22 to 33
100
Resilience: Unit (Modulus of Resilience), kJ/m3 1230 to 2130
500
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 45
24
Strength to Weight: Axial, points 47 to 54
21
Strength to Weight: Bending, points 47 to 52
20
Thermal Diffusivity, mm2/s 58
12
Thermal Shock Resistance, points 22 to 26
18

Alloy Composition

Aluminum (Al), % 87.9 to 90.6
0.015 to 0.054
Carbon (C), % 0
0 to 0.18
Chromium (Cr), % 0 to 0.050
0 to 0.35
Copper (Cu), % 1.5 to 2.0
0 to 0.6
Iron (Fe), % 0 to 0.15
95 to 99.985
Magnesium (Mg), % 2.1 to 2.6
0
Manganese (Mn), % 0 to 0.1
0 to 1.8
Molybdenum (Mo), % 0
0 to 0.23
Nickel (Ni), % 0 to 0.050
0 to 0.85
Niobium (Nb), % 0
0 to 0.060
Nitrogen (N), % 0
0 to 0.027
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.12
0 to 0.65
Sulfur (S), % 0
0 to 0.025
Titanium (Ti), % 0 to 0.060
0 to 0.060
Vanadium (V), % 0
0 to 0.14
Zinc (Zn), % 5.7 to 6.7
0
Zirconium (Zr), % 0.1 to 0.16
0
Residuals, % 0 to 0.15
0