MakeItFrom.com
Menu (ESC)

7010 Aluminum vs. EN 2.4608 Nickel

7010 aluminum belongs to the aluminum alloys classification, while EN 2.4608 nickel belongs to the nickel alloys. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7010 aluminum and the bottom bar is EN 2.4608 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
210
Elongation at Break, % 3.9 to 6.8
34
Fatigue Strength, MPa 160 to 190
200
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 26
81
Shear Strength, MPa 300 to 340
410
Tensile Strength: Ultimate (UTS), MPa 520 to 590
620
Tensile Strength: Yield (Proof), MPa 410 to 540
270

Thermal Properties

Latent Heat of Fusion, J/g 380
330
Maximum Temperature: Mechanical, °C 200
1000
Melting Completion (Liquidus), °C 630
1460
Melting Onset (Solidus), °C 480
1410
Specific Heat Capacity, J/kg-K 860
460
Thermal Conductivity, W/m-K 150
11
Thermal Expansion, µm/m-K 24
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 120
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 10
55
Density, g/cm3 3.0
8.5
Embodied Carbon, kg CO2/kg material 8.3
8.4
Embodied Energy, MJ/kg 150
120
Embodied Water, L/kg 1120
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 22 to 33
170
Resilience: Unit (Modulus of Resilience), kJ/m3 1230 to 2130
180
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 45
23
Strength to Weight: Axial, points 47 to 54
20
Strength to Weight: Bending, points 47 to 52
19
Thermal Diffusivity, mm2/s 58
2.9
Thermal Shock Resistance, points 22 to 26
16

Alloy Composition

Aluminum (Al), % 87.9 to 90.6
0
Carbon (C), % 0
0.030 to 0.080
Chromium (Cr), % 0 to 0.050
24 to 26
Cobalt (Co), % 0
2.5 to 4.0
Copper (Cu), % 1.5 to 2.0
0
Iron (Fe), % 0 to 0.15
11.4 to 23.8
Magnesium (Mg), % 2.1 to 2.6
0
Manganese (Mn), % 0 to 0.1
0 to 2.0
Molybdenum (Mo), % 0
2.5 to 4.0
Nickel (Ni), % 0 to 0.050
44 to 47
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.12
0.7 to 1.5
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.060
0
Tungsten (W), % 0
2.5 to 4.0
Zinc (Zn), % 5.7 to 6.7
0
Zirconium (Zr), % 0.1 to 0.16
0
Residuals, % 0 to 0.15
0