MakeItFrom.com
Menu (ESC)

7010 Aluminum vs. Nickel 686

7010 aluminum belongs to the aluminum alloys classification, while nickel 686 belongs to the nickel alloys. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7010 aluminum and the bottom bar is nickel 686.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
220
Elongation at Break, % 3.9 to 6.8
51
Fatigue Strength, MPa 160 to 190
410
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 26
77
Shear Strength, MPa 300 to 340
560
Tensile Strength: Ultimate (UTS), MPa 520 to 590
780
Tensile Strength: Yield (Proof), MPa 410 to 540
350

Thermal Properties

Latent Heat of Fusion, J/g 380
320
Maximum Temperature: Mechanical, °C 200
980
Melting Completion (Liquidus), °C 630
1380
Melting Onset (Solidus), °C 480
1340
Specific Heat Capacity, J/kg-K 860
420
Thermal Conductivity, W/m-K 150
9.8
Thermal Expansion, µm/m-K 24
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 120
1.4

Otherwise Unclassified Properties

Base Metal Price, % relative 10
70
Density, g/cm3 3.0
9.0
Embodied Carbon, kg CO2/kg material 8.3
12
Embodied Energy, MJ/kg 150
170
Embodied Water, L/kg 1120
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 22 to 33
320
Resilience: Unit (Modulus of Resilience), kJ/m3 1230 to 2130
280
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 45
22
Strength to Weight: Axial, points 47 to 54
24
Strength to Weight: Bending, points 47 to 52
21
Thermal Diffusivity, mm2/s 58
2.6
Thermal Shock Resistance, points 22 to 26
21

Alloy Composition

Aluminum (Al), % 87.9 to 90.6
0
Carbon (C), % 0
0 to 0.010
Chromium (Cr), % 0 to 0.050
19 to 23
Copper (Cu), % 1.5 to 2.0
0
Iron (Fe), % 0 to 0.15
0 to 5.0
Magnesium (Mg), % 2.1 to 2.6
0
Manganese (Mn), % 0 to 0.1
0 to 0.75
Molybdenum (Mo), % 0
15 to 17
Nickel (Ni), % 0 to 0.050
49.5 to 63
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.12
0 to 0.080
Sulfur (S), % 0
0 to 0.020
Titanium (Ti), % 0 to 0.060
0.020 to 0.25
Tungsten (W), % 0
3.0 to 4.4
Zinc (Zn), % 5.7 to 6.7
0
Zirconium (Zr), % 0.1 to 0.16
0
Residuals, % 0 to 0.15
0