MakeItFrom.com
Menu (ESC)

7010 Aluminum vs. Nickel 890

7010 aluminum belongs to the aluminum alloys classification, while nickel 890 belongs to the nickel alloys. There are 26 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7010 aluminum and the bottom bar is nickel 890.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
200
Elongation at Break, % 3.9 to 6.8
39
Fatigue Strength, MPa 160 to 190
180
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 26
78
Shear Strength, MPa 300 to 340
400
Tensile Strength: Ultimate (UTS), MPa 520 to 590
590
Tensile Strength: Yield (Proof), MPa 410 to 540
230

Thermal Properties

Latent Heat of Fusion, J/g 380
330
Maximum Temperature: Mechanical, °C 200
1000
Melting Completion (Liquidus), °C 630
1390
Melting Onset (Solidus), °C 480
1340
Specific Heat Capacity, J/kg-K 860
480
Thermal Expansion, µm/m-K 24
14

Otherwise Unclassified Properties

Base Metal Price, % relative 10
47
Density, g/cm3 3.0
8.1
Embodied Carbon, kg CO2/kg material 8.3
8.2
Embodied Energy, MJ/kg 150
120
Embodied Water, L/kg 1120
250

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 22 to 33
180
Resilience: Unit (Modulus of Resilience), kJ/m3 1230 to 2130
140
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 45
24
Strength to Weight: Axial, points 47 to 54
20
Strength to Weight: Bending, points 47 to 52
19
Thermal Shock Resistance, points 22 to 26
15

Alloy Composition

Aluminum (Al), % 87.9 to 90.6
0.050 to 0.6
Carbon (C), % 0
0.060 to 0.14
Chromium (Cr), % 0 to 0.050
23.5 to 28.5
Copper (Cu), % 1.5 to 2.0
0 to 0.75
Iron (Fe), % 0 to 0.15
17.3 to 33.9
Magnesium (Mg), % 2.1 to 2.6
0
Manganese (Mn), % 0 to 0.1
0 to 1.5
Molybdenum (Mo), % 0
1.0 to 2.0
Nickel (Ni), % 0 to 0.050
40 to 45
Niobium (Nb), % 0
0.2 to 1.0
Silicon (Si), % 0 to 0.12
1.0 to 2.0
Sulfur (S), % 0
0 to 0.015
Tantalum (Ta), % 0
0.1 to 0.6
Titanium (Ti), % 0 to 0.060
0.15 to 0.6
Zinc (Zn), % 5.7 to 6.7
0
Zirconium (Zr), % 0.1 to 0.16
0
Residuals, % 0 to 0.15
0