MakeItFrom.com
Menu (ESC)

7010 Aluminum vs. SAE-AISI H13 Steel

7010 aluminum belongs to the aluminum alloys classification, while SAE-AISI H13 steel belongs to the iron alloys. There are 23 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7010 aluminum and the bottom bar is SAE-AISI H13 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
190
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 26
74
Tensile Strength: Ultimate (UTS), MPa 520 to 590
690 to 1820

Thermal Properties

Latent Heat of Fusion, J/g 380
270
Melting Completion (Liquidus), °C 630
1460
Melting Onset (Solidus), °C 480
1420
Specific Heat Capacity, J/kg-K 860
470
Thermal Conductivity, W/m-K 150
29
Thermal Expansion, µm/m-K 24
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
8.3
Electrical Conductivity: Equal Weight (Specific), % IACS 120
9.7

Otherwise Unclassified Properties

Base Metal Price, % relative 10
6.0
Density, g/cm3 3.0
7.8
Embodied Carbon, kg CO2/kg material 8.3
4.3
Embodied Energy, MJ/kg 150
64
Embodied Water, L/kg 1120
78

Common Calculations

Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 45
25
Strength to Weight: Axial, points 47 to 54
25 to 65
Strength to Weight: Bending, points 47 to 52
22 to 43
Thermal Diffusivity, mm2/s 58
7.8
Thermal Shock Resistance, points 22 to 26
25 to 65

Alloy Composition

Aluminum (Al), % 87.9 to 90.6
0
Carbon (C), % 0
0.32 to 0.45
Chromium (Cr), % 0 to 0.050
4.8 to 5.5
Copper (Cu), % 1.5 to 2.0
0 to 0.25
Iron (Fe), % 0 to 0.15
88.8 to 92
Magnesium (Mg), % 2.1 to 2.6
0
Manganese (Mn), % 0 to 0.1
0.2 to 0.5
Molybdenum (Mo), % 0
1.1 to 1.8
Nickel (Ni), % 0 to 0.050
0 to 0.3
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.12
0.8 to 1.2
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.060
0
Vanadium (V), % 0
0.8 to 1.2
Zinc (Zn), % 5.7 to 6.7
0
Zirconium (Zr), % 0.1 to 0.16
0
Residuals, % 0 to 0.15
0