MakeItFrom.com
Menu (ESC)

7010 Aluminum vs. C28000 Muntz Metal

7010 aluminum belongs to the aluminum alloys classification, while C28000 Muntz Metal belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 7010 aluminum and the bottom bar is C28000 Muntz Metal.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
100
Elongation at Break, % 3.9 to 6.8
10 to 45
Poisson's Ratio 0.32
0.31
Shear Modulus, GPa 26
40
Shear Strength, MPa 300 to 340
230 to 330
Tensile Strength: Ultimate (UTS), MPa 520 to 590
330 to 610
Tensile Strength: Yield (Proof), MPa 410 to 540
150 to 370

Thermal Properties

Latent Heat of Fusion, J/g 380
170
Maximum Temperature: Mechanical, °C 200
120
Melting Completion (Liquidus), °C 630
900
Melting Onset (Solidus), °C 480
900
Specific Heat Capacity, J/kg-K 860
390
Thermal Conductivity, W/m-K 150
120
Thermal Expansion, µm/m-K 24
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40
28
Electrical Conductivity: Equal Weight (Specific), % IACS 120
31

Otherwise Unclassified Properties

Base Metal Price, % relative 10
23
Density, g/cm3 3.0
8.0
Embodied Carbon, kg CO2/kg material 8.3
2.7
Embodied Energy, MJ/kg 150
46
Embodied Water, L/kg 1120
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 22 to 33
27 to 240
Resilience: Unit (Modulus of Resilience), kJ/m3 1230 to 2130
110 to 670
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 45
20
Strength to Weight: Axial, points 47 to 54
11 to 21
Strength to Weight: Bending, points 47 to 52
13 to 20
Thermal Diffusivity, mm2/s 58
40
Thermal Shock Resistance, points 22 to 26
11 to 20

Alloy Composition

Aluminum (Al), % 87.9 to 90.6
0
Chromium (Cr), % 0 to 0.050
0
Copper (Cu), % 1.5 to 2.0
59 to 63
Iron (Fe), % 0 to 0.15
0 to 0.070
Lead (Pb), % 0
0 to 0.3
Magnesium (Mg), % 2.1 to 2.6
0
Manganese (Mn), % 0 to 0.1
0
Nickel (Ni), % 0 to 0.050
0
Silicon (Si), % 0 to 0.12
0
Titanium (Ti), % 0 to 0.060
0
Zinc (Zn), % 5.7 to 6.7
36.3 to 41
Zirconium (Zr), % 0.1 to 0.16
0
Residuals, % 0
0 to 0.3